論文の概要: Is In-Context Learning Sufficient for Instruction Following in LLMs?
- arxiv url: http://arxiv.org/abs/2405.19874v1
- Date: Thu, 30 May 2024 09:28:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 15:09:01.777188
- Title: Is In-Context Learning Sufficient for Instruction Following in LLMs?
- Title(参考訳): LLMにおけるインテクスト学習は指導に十分か?
- Authors: Hao Zhao, Maksym Andriushchenko, Francesco Croce, Nicolas Flammarion,
- Abstract要約: ICL とAL とのアライメントは,既存のベンチマークのインストラクションの微調整に比べてまだ不十分であることを示す。
我々は,命令微調整のギャップを埋めることなく,性能を著しく改善するICL例に対する欲求選択手法を導出する。
- 参考スコア(独自算出の注目度): 38.29072578390376
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In-context learning (ICL) allows LLMs to learn from examples without changing their weights, which is a particularly promising capability for long-context LLMs that can potentially learn from many examples. Recently, Lin et al. (2024) proposed URIAL, a method using only three in-context examples to align base LLMs, achieving non-trivial instruction following performance. In this work, we show that, while effective, ICL alignment with URIAL still underperforms compared to instruction fine-tuning on established benchmarks such as MT-Bench and AlpacaEval 2.0 (LC), especially with more capable base LMs. Unlike for tasks such as classification, translation, or summarization, adding more ICL demonstrations for long-context LLMs does not systematically improve instruction following performance. To address this limitation, we derive a greedy selection approach for ICL examples that noticeably improves performance, yet without bridging the gap to instruction fine-tuning. Finally, we provide a series of ablation studies to better understand the reasons behind the remaining gap, and we show how some aspects of ICL depart from the existing knowledge and are specific to the instruction tuning setting. Overall, our work advances the understanding of ICL as an alignment technique. We provide our code at https://github.com/tml-epfl/icl-alignment.
- Abstract(参考訳): In-context Learning (ICL)は、LLMが重みを変えずに例から学ぶことを可能にする。
最近,Lin et al (2024) が提案したURIALは,テキスト内例を3つだけ使用してベースLLMを整列させる手法で,実行後の非自明な命令を実現する。
本稿では,従来のベンチマークであるMT-Bench や AlpacaEval 2.0 (LC) の命令微調整と比較して,URIAL との ICL のアライメントは依然として不十分であることを示す。
分類、翻訳、要約のようなタスクとは異なり、長いコンテキストのLLMに対してより多くのICLデモを追加することは、パフォーマンスの後の命令を体系的に改善しない。
この制限に対処するために、命令微調整のギャップを埋めることなく、性能を著しく改善するICL例に対する欲求選択手法を導出する。
最後に、残りのギャップの背景にある理由をよりよく理解するために、一連のアブレーション研究を行い、ICLのいくつかの側面が既存の知識から切り離され、インストラクションチューニング設定に特有であることを示す。
全体として、我々の研究はICLのアライメント技術としての理解を深めている。
私たちはhttps://github.com/tml-epfl/icl-alignment.comでコードを公開しています。
関連論文リスト
- In-Context Learning with Reinforcement Learning for Incomplete Utterance Rewriting [33.89176174108559]
大規模言語モデル(LLM)の文脈内学習は、いくつかの例で拡張された命令に基づいて予測を行う。
ICLの既存の例選択方法はスパースまたは高密度レトリバーを使用し、有効性能を導出する。
本稿では,言語モデルセレクタとLLMジェネレータから構成される実例選択(RLS)のためのポリシーベース強化学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-23T12:32:12Z) - Recall, Retrieve and Reason: Towards Better In-Context Relation Extraction [11.535892987373947]
関係抽出(RE)は、テキストで言及されたエンティティ間の関係を特定することを目的としている。
大規模言語モデル(LLM)は、様々なタスクにおいて、コンテキスト内学習能力を印象的に示している。
LLMは、ほとんどの教師付き細調整RE法と比較して性能が劣る。
論文 参考訳(メタデータ) (2024-04-27T07:12:52Z) - Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond [24.151927600694066]
コミットメッセージ生成(CMG)アプローチは、与えられたコード差分に基づいてコミットメッセージを自動的に生成することを目的としている。
本稿では,Large Language Models (LLMs) を用いて高品質なコミットメッセージの生成にどの程度の期間を費やしてきたかを調べるための,最初の包括的な実験を行う。
論文 参考訳(メタデータ) (2024-04-23T08:24:43Z) - The Unlocking Spell on Base LLMs: Rethinking Alignment via In-Context
Learning [61.68787689234622]
最近の研究であるLIMAは、アライメントチューニングに1Kの例のみを用いることで、アライメント性能も著しく向上することを示した。
これにより、アライメントチューニングがベースLLMをどのように変換するかという疑問が提起される。
本研究では,チューニングフリーとチューニングベースアライメントのギャップを戦略的プロンプトによって著しく低減できることを示す。
論文 参考訳(メタデータ) (2023-12-04T00:46:11Z) - In-Context Exemplars as Clues to Retrieving from Large Associative
Memory [1.2952137350423816]
インコンテキスト学習(ICL)は、大規模言語モデル(LLM)がトレーニングなしでインコンテキストの例からパターンを学習することを可能にする。
文脈内学習の仕組みの理解が欠如しているため、模範をどう選ぶかはいまだ不明である。
本研究は、メモリ検索に接続することで、ICLのメカニズムに新たな光を当てる。
論文 参考訳(メタデータ) (2023-11-06T20:13:29Z) - FollowBench: A Multi-level Fine-grained Constraints Following Benchmark for Large Language Models [79.62191017182518]
FollowBenchは、大規模言語モデルのベンチマークに続くきめ細かい制約のベンチマークである。
本稿では,初期命令に段階的に1つの制約を付加するマルチレベル機構を提案する。
FollowBench上での13のLLMの評価により,LLMの弱さと今後の研究への道のりを示す。
論文 参考訳(メタデータ) (2023-10-31T12:32:38Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
トレーニングセットの低品質データは、通常、チューニングのチューニングに有害である。
我々は「反射チューニング」と呼ばれる新しい手法を提案する。
このアプローチでは、オラクルLSMを使用して、データ内の命令や応答の質を検査し、向上することで、元のトレーニングデータをリサイクルする。
論文 参考訳(メタデータ) (2023-10-18T05:13:47Z) - FederatedScope-LLM: A Comprehensive Package for Fine-tuning Large
Language Models in Federated Learning [70.38817963253034]
本稿では, ファインチューニング LLM のこれらの課題について論じ, 本パッケージ FS-LLM を主な貢献として紹介する。
我々は、FLシナリオにおける将来の拡張のために、包括的フェデレーションパラメータ効率の良い微調整アルゴリズムの実装と汎用プログラミングインタフェースを提供する。
本研究では, FS-LLM の有効性を検証し, FL 設定におけるパラメータ効率の高いパラメータ調整アルゴリズムを用いて, 高度な LLM のベンチマークを行う。
論文 参考訳(メタデータ) (2023-09-01T09:40:36Z) - ICL-D3IE: In-Context Learning with Diverse Demonstrations Updating for
Document Information Extraction [56.790794611002106]
大規模言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて、文脈内学習による顕著な結果を示している。
ICL-D3IEと呼ばれるシンプルだが効果的なテキスト内学習フレームワークを提案する。
具体的には、ハードトレーニング文書から最も困難で独特なセグメントをハードデモとして抽出する。
論文 参考訳(メタデータ) (2023-03-09T06:24:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。