論文の概要: PixOOD: Pixel-Level Out-of-Distribution Detection
- arxiv url: http://arxiv.org/abs/2405.19882v3
- Date: Thu, 24 Oct 2024 11:00:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-25 16:43:03.256620
- Title: PixOOD: Pixel-Level Out-of-Distribution Detection
- Title(参考訳): PixOOD:Pixelレベルのアウト・オブ・ディストリビューション検出
- Authors: Tomáš Vojíř, Jan Šochman, Jiří Matas,
- Abstract要約: 本稿では、異常データのサンプルのトレーニングを必要としないPixOODと呼ばれる高密度画像予測アルゴリズムを提案する。
画素レベルでの分布内データの複雑なクラス内変動をモデル化するために,オンラインデータ凝縮アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We propose a dense image prediction out-of-distribution detection algorithm, called PixOOD, which does not require training on samples of anomalous data and is not designed for a specific application which avoids traditional training biases. In order to model the complex intra-class variability of the in-distribution data at the pixel level, we propose an online data condensation algorithm which is more robust than standard K-means and is easily trainable through SGD. We evaluate PixOOD on a wide range of problems. It achieved state-of-the-art results on four out of seven datasets, while being competitive on the rest. The source code is available at https://github.com/vojirt/PixOOD.
- Abstract(参考訳): PixOODは異常データのサンプルのトレーニングを必要とせず、従来のトレーニングバイアスを回避する特定のアプリケーションのために設計されていない。
画素レベルでの分布データの複雑なクラス内変動をモデル化するために,従来のK平均よりも頑健で,SGDで容易に訓練できるオンラインデータ凝縮アルゴリズムを提案する。
我々はPixOODを幅広い問題について評価した。
7つのデータセットのうち4つは最先端の結果であり、残りは競争力がある。
ソースコードはhttps://github.com/vojirt/PixOOD.comで入手できる。
関連論文リスト
- bit2bit: 1-bit quanta video reconstruction via self-supervised photon prediction [57.199618102578576]
疎二分量時間画像データから高画質の画像スタックを元の解像度で再構成する新しい方法であるbit2bitを提案する。
Poisson denoisingの最近の研究に触発されて、スパースバイナリ光子データから高密度な画像列を生成するアルゴリズムを開発した。
本研究では,様々な課題の画像条件下でのSPADの高速映像を多種多種に含む新しいデータセットを提案する。
論文 参考訳(メタデータ) (2024-10-30T17:30:35Z) - An accurate detection is not all you need to combat label noise in web-noisy datasets [23.020126612431746]
分離した超平面の直接推定により,OOD試料の正確な検出が可能であることを示す。
本稿では,線形分離を用いた雑音検出とSOTA(State-of-the-art-the-loss)アプローチを交互に行うハイブリッドソリューションを提案する。
論文 参考訳(メタデータ) (2024-07-08T00:21:42Z) - Equipping Diffusion Models with Differentiable Spatial Entropy for Low-Light Image Enhancement [7.302792947244082]
本研究では,決定論的画素間比較から統計的視点へ焦点を移す新しい手法を提案する。
中心となる考え方は、損失関数に空間エントロピーを導入して、予測と目標の分布差を測定することである。
具体的には,拡散モデルにエントロピーを装備し,L1ベースノイズマッチング損失よりも高精度で知覚品質の向上を図っている。
論文 参考訳(メタデータ) (2024-04-15T12:35:10Z) - Semi-supervised Counting via Pixel-by-pixel Density Distribution
Modelling [135.66138766927716]
本稿では,トレーニングデータのごく一部をラベル付けした半教師付き群集カウントに着目した。
我々は1つの決定論的値ではなく、確率分布として回帰するためにピクセル単位の密度値を定式化する。
本手法は,様々なラベル付き比率設定の下で,競争相手よりも明らかに優れる。
論文 参考訳(メタデータ) (2024-02-23T12:48:02Z) - Rethinking FID: Towards a Better Evaluation Metric for Image Generation [43.66036053597747]
Inception Distanceは、実画像のInception-v3特徴分布とアルゴリズムによって生成された画像の距離を推定する。
インセプションの貧弱な表現は、現代のテキスト・画像モデルによって生成されるリッチで多様なコンテンツ、不正確な正規性仮定、そしてサンプルの複雑さによって引き起こされる。
よりリッチなCLIP埋め込みとガウスRBFカーネルとの最大平均差距離に基づく代替のCMMDを提案する。
論文 参考訳(メタデータ) (2023-11-30T19:11:01Z) - Uncertainty Quantification via Neural Posterior Principal Components [26.26693707762823]
不確実性定量化は、画像復元モデルの安全クリティカルドメインへの展開に不可欠である。
本稿では,入力画像の後方分布のPCをニューラルネットワークの単一前方通過で予測する手法を提案する。
提案手法は, インスタンス適応型不確実性方向を確実に伝達し, 後部サンプリングに匹敵する不確実性定量化を実現する。
論文 参考訳(メタデータ) (2023-09-27T09:51:29Z) - Out-of-Distribution Detection for Monocular Depth Estimation [4.873593653200759]
異常検出により,エンコーダ・デコーダ深度推定モデルからOOD画像を検出することを提案する。
我々は,標準のNYU Depth V2とKITTIベンチマークを分散データとして構築した。
論文 参考訳(メタデータ) (2023-08-11T11:25:23Z) - Probabilistic Deep Metric Learning for Hyperspectral Image
Classification [91.5747859691553]
本稿では,ハイパースペクトル画像分類のための確率論的深度学習フレームワークを提案する。
ハイパースペクトルセンサーが捉えた画像に対して、各ピクセルのカテゴリを予測することを目的としている。
我々のフレームワークは、既存のハイパースペクトル画像分類法に容易に適用できる。
論文 参考訳(メタデータ) (2022-11-15T17:57:12Z) - PixelPyramids: Exact Inference Models from Lossless Image Pyramids [58.949070311990916]
Pixel-Pyramidsは、画像画素の関節分布を符号化するスケール特異的表現を用いたブロック自動回帰手法である。
様々な画像データセット、特に高解像度データに対する密度推定の最先端結果が得られる。
CelebA-HQ 1024 x 1024 では,フローベースモデルの並列化よりもサンプリング速度が優れているにもかかわらず,密度推定値がベースラインの 44% に向上することが観察された。
論文 参考訳(メタデータ) (2021-10-17T10:47:29Z) - Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance
Disparity Estimation [51.17232267143098]
ステレオ画像から3次元物体を検出するための新しいシステムDisp R-CNNを提案する。
我々は、LiDAR点雲を必要とせずに、統計的形状モデルを用いて、密度の異なる擬似地下構造を生成する。
KITTIデータセットの実験によると、LiDARの基盤構造がトレーニング時に利用できない場合でも、Disp R-CNNは競争性能を達成し、平均精度で従来の最先端手法を20%上回っている。
論文 参考訳(メタデータ) (2020-04-07T17:48:45Z) - Generalized ODIN: Detecting Out-of-distribution Image without Learning
from Out-of-distribution Data [87.61504710345528]
我々は,OoD検出性能を改善しつつ,ニューラルネットワークをOoDデータのチューニングから解放する2つの方法を提案する。
具体的には、信頼性スコアリングと修正された入力前処理法を分離することを提案する。
大規模画像データセットのさらなる解析により、セマンティックシフトと非セマンティックシフトの2種類の分布シフトが有意な差を示すことが示された。
論文 参考訳(メタデータ) (2020-02-26T04:18:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。