論文の概要: Federated Learning with Multi-resolution Model Broadcast
- arxiv url: http://arxiv.org/abs/2405.19886v1
- Date: Thu, 30 May 2024 09:45:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 14:59:14.918310
- Title: Federated Learning with Multi-resolution Model Broadcast
- Title(参考訳): マルチ解像度モデル放送によるフェデレーション学習
- Authors: Henrik Rydén, Reza Moosavi, Erik G. Larsson,
- Abstract要約: 連合学習では、サーバは定期的にエージェントにモデルをブロードキャストしなければならない。
この目的のために,マルチレゾリューション符号化と変調を提案する。
- 参考スコア(独自算出の注目度): 30.716966985615443
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In federated learning, a server must periodically broadcast a model to the agents. We propose to use multi-resolution coding and modulation (also known as non-uniform modulation) for this purpose. In the simplest instance, broadcast transmission is used, whereby all agents are targeted with one and the same transmission (typically without any particular favored beam direction), which is coded using multi-resolution coding/modulation. This enables high-SNR agents, with high path gains to the server, to receive a more accurate model than the low-SNR agents do, without consuming more downlink resources. As one implementation, we use transmission with a non-uniform 8-PSK constellation, where a high-SNR receiver (agent) can separate all 8 constellation points (hence receive 3 bits) whereas a low-SNR receiver can only separate 4 points (hence receive 2 bits). By encoding the least significant information in the third bit, the high-SNR receivers can obtain the model with higher accuracy, while the low-SNR receiver can still obtain the model although with reduced accuracy, thereby facilitating at least some basic participation of the low-SNR receiver. We show the effectiveness of our proposed scheme via experimentation using federated learning with the MNIST data-set.
- Abstract(参考訳): 連合学習では、サーバは定期的にエージェントにモデルをブロードキャストしなければならない。
この目的のために,マルチレゾリューション符号化と変調(Non-uniform modulation)を提案する。
最も単純な例では、送信送信が使用され、すべてのエージェントが1つと同一の送信(典型的には特定のビーム方向を持たない)をターゲットとし、マルチ解像度の符号化/変調を用いて符号化される。
これにより、サーバへの高いパスゲインを持つ高SNRエージェントは、よりダウンリンクリソースを消費することなく、低SNRエージェントよりも正確なモデルを受け取ることができる。
1つの実装として、高SNR受信機(エージェント)が8つのコンステレーションポイント全てを分離できるのに対して、低SNR受信機は4つのポイントのみを分離できるのに対し、非一様8-PSKコンステレーションを用いる。
第3のビットで最小の有意情報を符号化することにより、高SNR受信機は高い精度でモデルを得ることができ、一方、低SNR受信機は精度が低いにもかかわらずモデルを得ることができるため、少なくとも低SNR受信機の基本参加が容易となる。
MNISTデータセットを用いたフェデレート学習による実験により提案手法の有効性を示す。
関連論文リスト
- Low-Latency Task-Oriented Communications with Multi-Round, Multi-Task Deep Learning [45.622060532244944]
本稿では,マルチラウンド・マルチタスク・ラーニング(MRMTL)によるマルチラウンド・トランスミッションにおけるチャネル利用の動的更新を提案する。
MRMTLはタスク指向通信の効率を大幅に向上することを示す。
論文 参考訳(メタデータ) (2024-11-15T17:48:06Z) - Learning Transferable Features for Implicit Neural Representations [37.12083836826336]
Inlicit Neural representations (INR) は、逆問題やニューラルレンダリングなど、様々な応用で成功している。
我々は新しいINRトレーニングフレームワークSTRAINERを導入し、新しい信号にINRを適合させるトランスファー可能な特徴を学習する。
我々は,複数の領域内および領域外信号適合タスクおよび逆問題に対するSTRAINERの評価を行った。
論文 参考訳(メタデータ) (2024-09-15T00:53:44Z) - A Machine Learning Approach for Simultaneous Demapping of QAM and APSK Constellations [6.718383919930469]
本稿では、1つのDNNデマッパーが同時に複数のQAMとAPSK星座をデマップできる新しい確率的フレームワークを提案する。
また、我々のフレームワークは、星座の族における階層的関係を活用できることを示した。
論文 参考訳(メタデータ) (2024-05-16T08:57:34Z) - Locality-Aware Generalizable Implicit Neural Representation [54.93702310461174]
一般化可能な暗黙的ニューラル表現(INR)は、単一の連続関数が複数のデータインスタンスを表現することを可能にする。
本稿では、変換器エンコーダと局所性を考慮したINRデコーダを組み合わせた一般化可能なINRのための新しいフレームワークを提案する。
我々のフレームワークは、従来の一般化可能なINRよりも大幅に優れており、下流タスクにおける局所性を考慮した潜在能力の有効性を検証している。
論文 参考訳(メタデータ) (2023-10-09T11:26:58Z) - SigT: An Efficient End-to-End MIMO-OFDM Receiver Framework Based on
Transformer [16.00729720170457]
SigTという名前のtextit Transformer に基づく新しいエンド・ツー・エンド・レシーバフレームワークが提案されている。
実験結果から,SigTはベンチマーク法よりも信号回復精度が高いことがわかった。
論文 参考訳(メタデータ) (2022-11-02T14:08:16Z) - Deep Learning-Based Rate-Splitting Multiple Access for Reconfigurable
Intelligent Surface-Aided Tera-Hertz Massive MIMO [56.022764337221325]
再構成可能なインテリジェントサーフェス(RIS)は,Tera-Hertz大規模マルチインプットマルチアウトプット(MIMO)通信システムのサービスカバレッジを大幅に向上させることができる。
しかし、パイロットとフィードバック信号のオーバーヘッドが限定された正確な高次元チャネル状態情報(CSI)を得ることは困難である。
本稿では、RIS支援Tera-Hertzマルチユーザアクセスシステムのための、ディープラーニング(DL)に基づくレート分割多重アクセス方式を提案する。
論文 参考訳(メタデータ) (2022-09-18T03:07:37Z) - Neural Implicit Dictionary via Mixture-of-Expert Training [111.08941206369508]
ニューラルインシシット辞書(NID)を学習することで、データとトレーニング効率の両方を達成する汎用INRフレームワークを提案する。
我々のNIDは、所望の関数空間にまたがるように調整された座標ベースのImpworksのグループを組み立てる。
実験の結果,NIDは最大98%の入力データで2次元画像や3次元シーンの再現を2桁高速化できることがわかった。
論文 参考訳(メタデータ) (2022-07-08T05:07:19Z) - End-to-End Learning for Uplink MU-SIMO Joint Transmitter and
Non-Coherent Receiver Design in Fading Channels [11.182920270301304]
JTRD-Netと呼ばれる新しいエンドツーエンド学習手法が提案され、マルチユーザシングルインプットマルチ出力(MU-SIMO)ジョイントトランスミッタとフェーディングチャネルにおける非コヒーレントレシーバー設計(JTRD)をアップリンクする。
送信側は、マルチユーザー波形設計を担当する並列線形層のグループとしてモデル化されています。
非コヒーレント受信機は、マルチユーザ検出(MUD)機能を提供するために、ディープフィードフォワードニューラルネットワーク(DFNN)によって形成される。
論文 参考訳(メタデータ) (2021-05-04T02:47:59Z) - Deep Networks for Direction-of-Arrival Estimation in Low SNR [89.45026632977456]
我々は,真の配列多様体行列の変異チャネルデータから学習した畳み込みニューラルネットワーク(CNN)を導入する。
我々は低SNR体制でCNNを訓練し、すべてのSNRでDoAを予測する。
私たちの堅牢なソリューションは、ワイヤレスアレイセンサーから音響マイクロフォンやソナーまで、いくつかの分野に適用できます。
論文 参考訳(メタデータ) (2020-11-17T12:52:18Z) - FedRec: Federated Learning of Universal Receivers over Fading Channels [92.15358738530037]
本稿では,ダウンリンクフェージングチャネルに対するニューラルネットワークを用いたシンボル検出手法を提案する。
複数のユーザが協力して、普遍的なデータ駆動型検出器を学習する。
得られた受信機の性能は、フェーディング統計の知識を必要とせずに、様々なチャネル条件下でMAP性能に近づくことを示す。
論文 参考訳(メタデータ) (2020-11-14T11:29:55Z) - Directional ASR: A New Paradigm for E2E Multi-Speaker Speech Recognition
with Source Localization [73.62550438861942]
本稿では、指向性自動音声認識(D-ASR)と呼ばれる、エンドツーエンドのニューラルネットワーク方式で遠距離場マルチスピーカデータを処理するための新しいパラダイムを提案する。
D-ASRでは、マイクロホンアレイに対するソースの方位角を潜時変数として定義する。
論文 参考訳(メタデータ) (2020-10-30T20:26:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。