MM-Lego: Modular Biomedical Multimodal Models with Minimal Fine-Tuning
- URL: http://arxiv.org/abs/2405.19950v1
- Date: Thu, 30 May 2024 11:14:01 GMT
- Title: MM-Lego: Modular Biomedical Multimodal Models with Minimal Fine-Tuning
- Authors: Konstantin Hemker, Nikola Simidjievski, Mateja Jamnik,
- Abstract summary: Multimodal Lego (MM-Lego) is a modular and general-purpose fusion and model merging framework.
We show that MM-Lego can be used as a model merging method with end-to-end fusion models without any fine-tuning.
It achieves state-of-the-art results on six benchmarked multimodal biomedical tasks.
- Score: 10.774128925670183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Learning holistic computational representations in physical, chemical or biological systems requires the ability to process information from different distributions and modalities within the same model. Thus, the demand for multimodal machine learning models has sharply risen for modalities that go beyond vision and language, such as sequences, graphs, time series, or tabular data. While there are many available multimodal fusion and alignment approaches, most of them require end-to-end training, scale quadratically with the number of modalities, cannot handle cases of high modality imbalance in the training set, or are highly topology-specific, making them too restrictive for many biomedical learning tasks. This paper presents Multimodal Lego (MM-Lego), a modular and general-purpose fusion and model merging framework to turn any set of encoders into a competitive multimodal model with no or minimal fine-tuning. We achieve this by introducing a wrapper for unimodal encoders that enforces lightweight dimensionality assumptions between modalities and harmonises their representations by learning features in the frequency domain to enable model merging with little signal interference. We show that MM-Lego 1) can be used as a model merging method which achieves competitive performance with end-to-end fusion models without any fine-tuning, 2) can operate on any unimodal encoder, and 3) is a model fusion method that, with minimal fine-tuning, achieves state-of-the-art results on six benchmarked multimodal biomedical tasks.
Related papers
- Alt-MoE: Multimodal Alignment via Alternating Optimization of Multi-directional MoE with Unimodal Models [7.134682404460003]
We introduce a novel training framework, Alt-MoE, which employs the Mixture of Experts (MoE) as a unified multi-directional connector across modalities.
Our methodology has been validated on several well-performing uni-modal models.
arXiv Detail & Related papers (2024-09-09T10:40:50Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
We introduce U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semantics.
We employ feature fusion at multiple scales to ensure the effective extraction and integration of both global and local features.
Experimental results demonstrate that our approach achieves superior performance across multiple datasets.
arXiv Detail & Related papers (2024-05-24T08:58:48Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
Unsupervised pre-training has shown great success in skeleton-based action understanding.
We propose a Unified Multimodal Unsupervised Representation Learning framework, called UmURL.
UmURL exploits an efficient early-fusion strategy to jointly encode the multi-modal features in a single-stream manner.
arXiv Detail & Related papers (2023-11-06T13:56:57Z) - What Makes for Robust Multi-Modal Models in the Face of Missing
Modalities? [35.19295402483624]
We model the scenarios of multi-modal models encountering missing modalities from an information-theoretic perspective.
We introduce Uni-Modal Ensemble with Missing Modality Adaptation (UME-MMA)
UME-MMA employs uni-modal pre-trained weights for the multi-modal model to enhance feature extraction and utilizes missing modality data augmentation techniques to better adapt to situations with missing modalities.
arXiv Detail & Related papers (2023-10-10T07:47:57Z) - Improving Discriminative Multi-Modal Learning with Large-Scale
Pre-Trained Models [51.5543321122664]
This paper investigates how to better leverage large-scale pre-trained uni-modal models to enhance discriminative multi-modal learning.
We introduce Multi-Modal Low-Rank Adaptation learning (MMLoRA)
arXiv Detail & Related papers (2023-10-08T15:01:54Z) - On Uni-Modal Feature Learning in Supervised Multi-Modal Learning [21.822251958013737]
We abstract the features (i.e. learned representations) of multi-modal data into 1) uni-modal features, which can be learned from uni-modal training, and 2) paired features, which can only be learned from cross-modal interactions.
We demonstrate that, under a simple guiding strategy, we can achieve comparable results to other complex late-fusion or intermediate-fusion methods on various multi-modal datasets.
arXiv Detail & Related papers (2023-05-02T07:15:10Z) - MultiViz: An Analysis Benchmark for Visualizing and Understanding
Multimodal Models [103.9987158554515]
MultiViz is a method for analyzing the behavior of multimodal models by scaffolding the problem of interpretability into 4 stages.
We show that the complementary stages in MultiViz together enable users to simulate model predictions, assign interpretable concepts to features, perform error analysis on model misclassifications, and use insights from error analysis to debug models.
arXiv Detail & Related papers (2022-06-30T18:42:06Z) - Attention Bottlenecks for Multimodal Fusion [90.75885715478054]
Machine perception models are typically modality-specific and optimised for unimodal benchmarks.
We introduce a novel transformer based architecture that uses fusion' for modality fusion at multiple layers.
We conduct thorough ablation studies, and achieve state-of-the-art results on multiple audio-visual classification benchmarks.
arXiv Detail & Related papers (2021-06-30T22:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.