Testing in the Evolving World of DL Systems:Insights from Python GitHub Projects
- URL: http://arxiv.org/abs/2405.19976v1
- Date: Thu, 30 May 2024 11:58:05 GMT
- Title: Testing in the Evolving World of DL Systems:Insights from Python GitHub Projects
- Authors: Qurban Ali, Oliviero Riganelli, Leonardo Mariani,
- Abstract summary: This research investigates testing practices within DL projects in GitHub.
It focuses on aspects like test automation, the types of tests (e.g., unit, integration, and system), test suite growth rate, and evolution of testing practices across different project versions.
- Score: 4.171555557592296
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the ever-evolving field of Deep Learning (DL), ensuring project quality and reliability remains a crucial challenge. This research investigates testing practices within DL projects in GitHub. It quantifies the adoption of testing methodologies, focusing on aspects like test automation, the types of tests (e.g., unit, integration, and system), test suite growth rate, and evolution of testing practices across different project versions. We analyze a subset of 300 carefully selected repositories based on quantitative and qualitative criteria. This study reports insights on the prevalence of testing practices in DL projects within the open-source community.
Related papers
- BoostAdapter: Improving Vision-Language Test-Time Adaptation via Regional Bootstrapping [64.8477128397529]
We propose a training-required and training-free test-time adaptation framework.
We maintain a light-weight key-value memory for feature retrieval from instance-agnostic historical samples and instance-aware boosting samples.
We theoretically justify the rationality behind our method and empirically verify its effectiveness on both the out-of-distribution and the cross-domain datasets.
arXiv Detail & Related papers (2024-10-20T15:58:43Z) - Multi-language Unit Test Generation using LLMs [6.259245181881262]
We describe a generic pipeline that incorporates static analysis to guide LLMs in generating compilable and high-coverage test cases.
We show how the pipeline can be applied to different programming languages, specifically Java and Python, and to complex software requiring environment mocking.
Our results demonstrate that LLM-based test generation, when guided by static analysis, can be competitive with, and even outperform, state-of-the-art test-generation techniques in coverage achieved.
arXiv Detail & Related papers (2024-09-04T21:46:18Z) - Leveraging Large Language Models for Enhancing the Understandability of Generated Unit Tests [4.574205608859157]
We introduce UTGen, which combines search-based software testing and large language models to enhance the understandability of automatically generated test cases.
We observe that participants working on assignments with UTGen test cases fix up to 33% more bugs and use up to 20% less time when compared to baseline test cases.
arXiv Detail & Related papers (2024-08-21T15:35:34Z) - A System for Automated Unit Test Generation Using Large Language Models and Assessment of Generated Test Suites [1.4563527353943984]
Large Language Models (LLMs) have been applied to various aspects of software development.
We present AgoneTest: an automated system for generating test suites for Java projects.
arXiv Detail & Related papers (2024-08-14T23:02:16Z) - Elevating Software Quality in Agile Environments: The Role of Testing Professionals in Unit Testing [0.0]
Testing is an essential quality activity in the software development process.
This paper explores the participation of test engineers in unit testing within an industrial context.
arXiv Detail & Related papers (2024-03-20T00:41:49Z) - DevBench: A Comprehensive Benchmark for Software Development [72.24266814625685]
DevBench is a benchmark that evaluates large language models (LLMs) across various stages of the software development lifecycle.
Empirical studies show that current LLMs, including GPT-4-Turbo, fail to solve the challenges presented within DevBench.
Our findings offer actionable insights for the future development of LLMs toward real-world programming applications.
arXiv Detail & Related papers (2024-03-13T15:13:44Z) - Beyond Accuracy: An Empirical Study on Unit Testing in Open-source Deep
Learning Projects [24.712437703214547]
Deep Learning (DL) models have rapidly advanced, focusing on achieving high performance through testing model accuracy and robustness.
It is unclear whether DL projects, as software systems, are tested thoroughly or functionally correct when there is a need to treat and test them like other software systems.
We empirically study the unit tests in open-source DL projects, analyzing 9,129 projects from GitHub.
arXiv Detail & Related papers (2024-02-26T13:08:44Z) - Observation-based unit test generation at Meta [52.4716552057909]
TestGen automatically generates unit tests, carved from serialized observations of complex objects, observed during app execution.
TestGen has landed 518 tests into production, which have been executed 9,617,349 times in continuous integration, finding 5,702 faults.
Our evaluation reveals that, when carving its observations from 4,361 reliable end-to-end tests, TestGen was able to generate tests for at least 86% of the classes covered by end-to-end tests.
arXiv Detail & Related papers (2024-02-09T00:34:39Z) - A Comprehensive Survey on Test-Time Adaptation under Distribution Shifts [143.14128737978342]
Test-time adaptation, an emerging paradigm, has the potential to adapt a pre-trained model to unlabeled data during testing, before making predictions.
Recent progress in this paradigm highlights the significant benefits of utilizing unlabeled data for training self-adapted models prior to inference.
arXiv Detail & Related papers (2023-03-27T16:32:21Z) - Beyond Accuracy: Behavioral Testing of NLP models with CheckList [66.42971817954806]
CheckList is a task-agnostic methodology for testing NLP models.
CheckList includes a matrix of general linguistic capabilities and test types that facilitate comprehensive test ideation.
In a user study, NLP practitioners with CheckList created twice as many tests, and found almost three times as many bugs as users without it.
arXiv Detail & Related papers (2020-05-08T15:48:31Z) - Dynamic Causal Effects Evaluation in A/B Testing with a Reinforcement
Learning Framework [68.96770035057716]
A/B testing is a business strategy to compare a new product with an old one in pharmaceutical, technological, and traditional industries.
This paper introduces a reinforcement learning framework for carrying A/B testing in online experiments.
arXiv Detail & Related papers (2020-02-05T10:25:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.