論文の概要: A Deep Reinforcement Learning Approach for Trading Optimization in the Forex Market with Multi-Agent Asynchronous Distribution
- arxiv url: http://arxiv.org/abs/2405.19982v1
- Date: Thu, 30 May 2024 12:07:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 14:38:07.748355
- Title: A Deep Reinforcement Learning Approach for Trading Optimization in the Forex Market with Multi-Agent Asynchronous Distribution
- Title(参考訳): マルチエージェント非同期分布をもつフォレックス市場における取引最適化のための深層強化学習手法
- Authors: Davoud Sarani, Dr. Parviz Rashidi-Khazaee,
- Abstract要約: この研究は、最先端の非同期アドバンテージ・アクター・クリティカル(A3C)アルゴリズムを用いたマルチエージェント(MA)RLフレームワークの適用を先導する。
ロックとロックなしの2つの異なるA3Cが提案され、単一通貨とマルチ通貨で訓練された。
以上の結果から,両モデルが近似政策最適化モデルよりも優れていたことが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In today's forex market traders increasingly turn to algorithmic trading, leveraging computers to seek more profits. Deep learning techniques as cutting-edge advancements in machine learning, capable of identifying patterns in financial data. Traders utilize these patterns to execute more effective trades, adhering to algorithmic trading rules. Deep reinforcement learning methods (DRL), by directly executing trades based on identified patterns and assessing their profitability, offer advantages over traditional DL approaches. This research pioneers the application of a multi-agent (MA) RL framework with the state-of-the-art Asynchronous Advantage Actor-Critic (A3C) algorithm. The proposed method employs parallel learning across multiple asynchronous workers, each specialized in trading across multiple currency pairs to explore the potential for nuanced strategies tailored to different market conditions and currency pairs. Two different A3C with lock and without lock MA model was proposed and trained on single currency and multi-currency. The results indicate that both model outperform on Proximal Policy Optimization model. A3C with lock outperforms other in single currency training scenario and A3C without Lock outperforms other in multi-currency scenario. The findings demonstrate that this approach facilitates broader and faster exploration of different currency pairs, significantly enhancing trading returns. Additionally, the agent can learn a more profitable trading strategy in a shorter time.
- Abstract(参考訳): 今日のフォレックス市場トレーダーはますますアルゴリズム取引に転換し、コンピューターを活用してより多くの利益を追求している。
機械学習における最先端の進歩としてのディープラーニング技術は、財務データのパターンを識別することができる。
トレーダーはこれらのパターンを利用してより効果的な取引を行い、アルゴリズム的な取引規則に従う。
特定パターンに基づいて取引を直接実行し、利益性を評価するディープ強化学習法(DRL)は、従来のDLアプローチよりも有利である。
この研究は、最先端の非同期アドバンテージ・アクター・クリティカル(A3C)アルゴリズムを用いたマルチエージェント(MA)RLフレームワークの適用を先導する。
提案手法では,複数の非同期作業者間で並列学習を行い,複数の通貨ペアの取引に特化して,異なる市場条件や通貨ペアに適したニュアンス戦略の可能性を探る。
ロックとロックなしの2つの異なるA3Cが提案され、単一通貨とマルチ通貨で訓練された。
以上の結果から,両モデルが近似政策最適化モデルよりも優れていたことが示唆された。
ロック付きA3Cはシングル通貨のトレーニングシナリオで、ロックなしA3Cはマルチ通貨シナリオで、他のA3Cより優れています。
その結果、このアプローチは異なる通貨ペアのより広範かつ迅速な探索を促進し、トレーディングリターンを大幅に向上させることを示した。
さらに、エージェントはより利益性の高いトレーディング戦略を短時間で学習することができる。
関連論文リスト
- MOT: A Mixture of Actors Reinforcement Learning Method by Optimal Transport for Algorithmic Trading [6.305870529904885]
マーケットの異なるパターンをモデル化するために,複数のアクターを非交叉表現学習で設計するMOTを提案する。
将来の市場データによる実験結果から,MOTはリスクのバランスを保ちながら優れた収益性を示すことが示された。
論文 参考訳(メタデータ) (2024-06-03T01:42:52Z) - Combining Deep Learning on Order Books with Reinforcement Learning for
Profitable Trading [0.0]
本研究は,注文フローを用いた複数地平線におけるリターン予測と,5つの金融機器を対象とした3つの時間差不均衡学習モデルを訓練することに焦点を当てる。
この結果は潜在的な可能性を証明しているが、小売取引コスト、滑り込み、スプレッド・揺らぎを完全に処理するためには、一貫した黒字取引のためのさらなる最小限の修正が必要である。
論文 参考訳(メタデータ) (2023-10-24T15:58:58Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - Learning Multi-Agent Intention-Aware Communication for Optimal
Multi-Order Execution in Finance [96.73189436721465]
まず,現実的な制約を考慮したマルチオーダー実行のためのマルチエージェントRL(MARL)手法を提案する。
本稿では,学習可能なマルチラウンド通信プロトコルを提案する。
2つの実世界の市場のデータに関する実験では、優れたパフォーマンスを示し、コラボレーションの有効性が著しく向上した。
論文 参考訳(メタデータ) (2023-07-06T16:45:40Z) - Uniswap Liquidity Provision: An Online Learning Approach [49.145538162253594]
分散取引所(DEX)は、テクノロジーを活用した新しいタイプのマーケットプレイスである。
そのようなDECの1つ、Unixwap v3は、流動性プロバイダが資金のアクティブな価格間隔を指定することで、より効率的に資金を割り当てることを可能にする。
これにより、価格間隔を選択するための最適な戦略を見出すことが問題となる。
我々は、この問題を非確率的な報酬を伴うオンライン学習問題として定式化する。
論文 参考訳(メタデータ) (2023-02-01T17:21:40Z) - Factor Investing with a Deep Multi-Factor Model [123.52358449455231]
我々は、業界中立化と市場中立化モジュールを明確な財務見識をもって取り入れた、新しい深層多要素モデルを開発する。
実世界の株式市場データによるテストは、我々の深層多要素モデルの有効性を示している。
論文 参考訳(メタデータ) (2022-10-22T14:47:11Z) - Algorithmic Trading Using Continuous Action Space Deep Reinforcement
Learning [11.516147824168732]
本稿では、Twin-Delayed DDPG(TD3)と日替わり価格を用いて、株式および暗号通貨市場でのトレーディング戦略を実現するためのアプローチを提案する。
本研究では,株式(Amazon)と暗号通貨(Bitcoin)の両市場を対象とし,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2022-10-07T11:42:31Z) - Finding General Equilibria in Many-Agent Economic Simulations Using Deep
Reinforcement Learning [72.23843557783533]
本研究では,エージェント種別のメタゲームに対して,エプシロン・ナッシュ平衡である安定解を求めることができることを示す。
私たちのアプローチはより柔軟で、例えば市場クリア化のような非現実的な仮定は必要ありません。
当社のアプローチは、実際のビジネスサイクルモデル、DGEモデルの代表的なファミリー、100人の労働者消費者、10社の企業、税金と再分配を行う政府で実証しています。
論文 参考訳(メタデータ) (2022-01-03T17:00:17Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
本稿では,エージェント・ベースの観点から,これらのマーケット・メーカーの戦略に関する研究に焦点をあてる。
模擬株式市場における知的市場マーカー作成のための強化学習(Reinforcement Learning, RL)の適用を提案する。
論文 参考訳(メタデータ) (2021-12-08T14:55:21Z) - Bitcoin Transaction Strategy Construction Based on Deep Reinforcement
Learning [8.431365407963629]
本研究では,PPO(Deep reinforcement Learning Algorithm-proximal Policy Optimization)に基づく,高速ビットコイン自動取引のためのフレームワークを提案する。
提案したフレームワークは、ボラティリティと急上昇の期間を通じて過剰なリターンを得ることができるため、ディープラーニングに基づく単一暗号通貨取引戦略を構築するための扉を開くことができる。
論文 参考訳(メタデータ) (2021-09-30T01:24:03Z) - MCTG:Multi-frequency continuous-share trading algorithm with GARCH based
on deep reinforcement learning [5.1727003187913665]
そこで本研究では,garch (mctg) を用いたマルチ周波数連続共有トレーディングアルゴリズムを提案する。
強化学習アルゴリズムの連続的な動作空間を持つ後者は、株式取引の問題を解決するために使用される。
中国株式市場の異なる業界での実験では、基本的なDRL法やベンチモデルと比較して余分な利益が得られている。
論文 参考訳(メタデータ) (2021-05-08T08:00:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。