論文の概要: When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments
- arxiv url: http://arxiv.org/abs/2407.18957v4
- Date: Sat, 21 Sep 2024 03:09:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-08 14:38:53.724814
- Title: When AI Meets Finance (StockAgent): Large Language Model-based Stock Trading in Simulated Real-world Environments
- Title(参考訳): AIが金融(StockAgent)と出会う - 実環境を模擬した大規模言語モデルに基づくストックトレーディング
- Authors: Chong Zhang, Xinyi Liu, Zhongmou Zhang, Mingyu Jin, Lingyao Li, Zhenting Wang, Wenyue Hua, Dong Shu, Suiyuan Zhu, Xiaobo Jin, Sujian Li, Mengnan Du, Yongfeng Zhang,
- Abstract要約: LLMによって駆動される、StockAgentと呼ばれるマルチエージェントAIシステムを開発した。
StockAgentを使えば、ユーザーはさまざまな外部要因が投資家取引に与える影響を評価することができる。
AIエージェントに基づく既存のトレーディングシミュレーションシステムに存在するテストセットのリーク問題を回避する。
- 参考スコア(独自算出の注目度): 55.19252983108372
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Can AI Agents simulate real-world trading environments to investigate the impact of external factors on stock trading activities (e.g., macroeconomics, policy changes, company fundamentals, and global events)? These factors, which frequently influence trading behaviors, are critical elements in the quest for maximizing investors' profits. Our work attempts to solve this problem through large language model based agents. We have developed a multi-agent AI system called StockAgent, driven by LLMs, designed to simulate investors' trading behaviors in response to the real stock market. The StockAgent allows users to evaluate the impact of different external factors on investor trading and to analyze trading behavior and profitability effects. Additionally, StockAgent avoids the test set leakage issue present in existing trading simulation systems based on AI Agents. Specifically, it prevents the model from leveraging prior knowledge it may have acquired related to the test data. We evaluate different LLMs under the framework of StockAgent in a stock trading environment that closely resembles real-world conditions. The experimental results demonstrate the impact of key external factors on stock market trading, including trading behavior and stock price fluctuation rules. This research explores the study of agents' free trading gaps in the context of no prior knowledge related to market data. The patterns identified through StockAgent simulations provide valuable insights for LLM-based investment advice and stock recommendation. The code is available at https://github.com/MingyuJ666/Stockagent.
- Abstract(参考訳): AIエージェントは、現実世界のトレーディング環境をシミュレートして、外的要因が株式トレーディング活動(例えば、マクロ経済学、政策変更、企業基本、グローバルイベント)に与える影響を調査できますか?
これらの要因は、しばしば取引行動に影響を与えるが、投資家の利益を最大化するための探求において重要な要素である。
我々の研究は、大規模言語モデルに基づくエージェントによってこの問題を解決しようと試みている。
LLMによって駆動されるマルチエージェントAIシステムであるStockAgentを開発した。
StockAgentを使えば、ユーザーはさまざまな外部要因が投資家の取引に与える影響を評価し、取引行動や収益性への影響を分析することができる。
さらに、StockAgentはAIエージェントに基づいた既存のトレーディングシミュレーションシステムに存在するテストセットのリーク問題を回避する。
具体的には、モデルがテストデータに関して取得した可能性のある事前知識を活用するのを防ぐ。
実環境によく似たストックトレーディング環境で,StockAgentの枠組みの下で異なるLCMを評価した。
実験結果は、取引行動や株価変動ルールを含む外的要因が株式市場取引に与える影響を実証した。
本研究は,市場データに関する事前知識がない文脈において,エージェントの自由貿易ギャップについて検討する。
StockAgentシミュレーションで特定されたパターンは、LLMベースの投資アドバイスと株式レコメンデーションに貴重な洞察を与える。
コードはhttps://github.com/MingyuJ666/Stockagent.comで公開されている。
関連論文リスト
- MOT: A Mixture of Actors Reinforcement Learning Method by Optimal Transport for Algorithmic Trading [6.305870529904885]
マーケットの異なるパターンをモデル化するために,複数のアクターを非交叉表現学習で設計するMOTを提案する。
将来の市場データによる実験結果から,MOTはリスクのバランスを保ちながら優れた収益性を示すことが示された。
論文 参考訳(メタデータ) (2024-06-03T01:42:52Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
大規模言語モデル(LLM)は、従来のNLPタスクを超えた現実的な実用的ミッションをターゲットとして、ますます賢く自律的になってきています。
我々は,現在8つの異なる環境からなるベンチマークであるAgentBenchを紹介し,LLM-as-Agentの推論と意思決定能力を評価する。
論文 参考訳(メタデータ) (2023-08-07T16:08:11Z) - HireVAE: An Online and Adaptive Factor Model Based on Hierarchical and
Regime-Switch VAE [113.47287249524008]
オンラインで適応的な環境で株価予測を行うファクターモデルを構築することは、依然としてオープンな疑問である。
本稿では,オンラインおよび適応型要素モデルであるHireVAEを,市場状況とストックワイド潜在要因の関係を埋め込んだ階層型潜在空間として提案する。
4つの一般的な実市場ベンチマークにおいて、提案されたHireVAEは、以前の手法よりもアクティブリターンの点で優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2023-06-05T12:58:13Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Many learning agents interacting with an agent-based market model [0.0]
反応型エージェントベースモデルと相互作用する最適な実行取引エージェントの学習のダイナミクスを考察する。
このモデルは、最適な実行学習エージェント、最小限の知的流動性テイカー、高速な電子流動性プロバイダによって表される3つの栄養レベルを持つ市場エコロジーを表している。
学習可能な最適な実行エージェントを組み込むことで、経験的データと同じ複雑さで動的に生成できるかどうかを検討する。
論文 参考訳(メタデータ) (2023-03-13T18:15:52Z) - Applications of Reinforcement Learning in Finance -- Trading with a
Double Deep Q-Network [0.0]
本稿では,単一資産,すなわちE-mini S&P 500連続先物契約を取引するためのDouble Deep Q-Networkアルゴリズムを提案する。
複数の拡張を備えた環境の基盤として、実証済みのセットアップを使用します。
当社のトレーディングエージェントの特徴は、常に商品などの追加資産を含むように拡張され、結果として4つのモデルが生まれています。
論文 参考訳(メタデータ) (2022-06-28T19:46:16Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
本稿では,エージェント・ベースの観点から,これらのマーケット・メーカーの戦略に関する研究に焦点をあてる。
模擬株式市場における知的市場マーカー作成のための強化学習(Reinforcement Learning, RL)の適用を提案する。
論文 参考訳(メタデータ) (2021-12-08T14:55:21Z) - Towards Realistic Market Simulations: a Generative Adversarial Networks
Approach [2.381990157809543]
本研究では,実データに基づいて学習したコンディショナル・ジェネレーティブ・アドバイザリアル・ネットワーク(CGAN)に基づくマーケットジェネレータを提案する。
CGANベースの"ワールド"エージェントは、実験エージェントに応答して意味のある順序を生成することができる。
論文 参考訳(メタデータ) (2021-10-25T22:01:07Z) - Trader-Company Method: A Metaheuristic for Interpretable Stock Price
Prediction [3.9189409002585562]
金融市場では、機械学習ベースのモデルの実践的応用を妨げるいくつかの課題がある。
本稿では,金融機関とトレーダーの役割を模倣する新たな進化モデルであるTrader-Company法を提案する。
トレーダーと呼ばれる複数の弱い学習者からの提案を集約し、将来の株式リターンを予測します。
論文 参考訳(メタデータ) (2020-12-18T13:19:27Z) - Taking Over the Stock Market: Adversarial Perturbations Against
Algorithmic Traders [47.32228513808444]
本稿では,敵対的学習手法を用いて,攻撃者がアルゴリズム取引システムに影響を与える現実的なシナリオを提案する。
入力ストリームに追加されると、我々の摂動は将来目に見えないデータポイントのトレーディングアルゴリズムを騙すことができることを示す。
論文 参考訳(メタデータ) (2020-10-19T06:28:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。