論文の概要: DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild
- arxiv url: http://arxiv.org/abs/2405.19996v1
- Date: Thu, 30 May 2024 12:32:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 14:28:22.603254
- Title: DP-IQA: Utilizing Diffusion Prior for Blind Image Quality Assessment in the Wild
- Title(参考訳): DP-IQA:野生のブラインド画像品質評価に先立って拡散を利用する
- Authors: Honghao Fu, Yufei Wang, Wenhan Yang, Bihan Wen,
- Abstract要約: 拡散先行型IQA(DP-IQA)と呼ばれる新しいIQA法を提案する。
トレーニング済みの安定拡散をバックボーンとして使用し、復調するU-Netから多レベル特徴を抽出し、それらをデコードして画質スコアを推定する。
上記のモデルの知識をCNNベースの学生モデルに抽出し、適用性を高めるためにパラメータを大幅に削減する。
- 参考スコア(独自算出の注目度): 54.139923409101044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image quality assessment (IQA) plays a critical role in selecting high-quality images and guiding compression and enhancement methods in a series of applications. The blind IQA, which assesses the quality of in-the-wild images containing complex authentic distortions without reference images, poses greater challenges. Existing methods are limited to modeling a uniform distribution with local patches and are bothered by the gap between low and high-level visions (caused by widely adopted pre-trained classification networks). In this paper, we propose a novel IQA method called diffusion priors-based IQA (DP-IQA), which leverages the prior knowledge from the pre-trained diffusion model with its excellent powers to bridge semantic gaps in the perception of the visual quality of images. Specifically, we use pre-trained stable diffusion as the backbone, extract multi-level features from the denoising U-Net during the upsampling process at a specified timestep, and decode them to estimate the image quality score. The text and image adapters are adopted to mitigate the domain gap for downstream tasks and correct the information loss caused by the variational autoencoder bottleneck. Finally, we distill the knowledge in the above model into a CNN-based student model, significantly reducing the parameter to enhance applicability, with the student model performing similarly or even better than the teacher model surprisingly. Experimental results demonstrate that our DP-IQA achieves state-of-the-art results on various in-the-wild datasets with better generalization capability, which shows the superiority of our method in global modeling and utilizing the hierarchical feature clues of diffusion for evaluating image quality.
- Abstract(参考訳): 画像品質評価(IQA)は,高品質な画像の選択や,一連のアプリケーションにおける圧縮・拡張手法の指導において重要な役割を担っている。
ブラインドIQAは、参照画像のない複雑な真の歪みを含む、ワイヤ内画像の品質を評価することで、より大きな課題を提起する。
既存の手法は局所パッチを用いた均一分布のモデル化に限られており、低レベルのビジョンと高レベルのビジョンのギャップに悩まされている。
本稿では, 画像の視覚的品質の知覚において, セマンティックギャップを橋渡しする優れた能力で, 事前学習した拡散モデルからの事前知識を活用する, 拡散事前ベースIQA (DP-IQA) と呼ばれる新しいIQA手法を提案する。
具体的には、トレーニング済みの安定拡散をバックボーンとして使用し、所定のタイミングでアップサンプリング中のU-Netからマルチレベル特徴を抽出し、画像品質スコアをデコードして推定する。
テキストおよびイメージアダプタは、下流タスクの領域ギャップを緩和し、変分オートエンコーダボトルネックに起因する情報損失を補正するために採用される。
最後に、上記のモデルにおける知識をCNNベースの学生モデルに蒸留し、適用性を高めるためにパラメータを著しく削減し、学生モデルは驚くほど教師モデルと同じような、あるいはそれ以上に優れている。
実験の結果, DP-IQAは, 画像品質評価のための拡散の階層的特徴指標を用いて, 大域的モデリングにおける手法の優位性を示した。
関連論文リスト
- GenzIQA: Generalized Image Quality Assessment using Prompt-Guided Latent Diffusion Models [7.291687946822539]
最先端のNR-IQA手法の大きな欠点は、様々なIQA設定にまたがる一般化能力に制限があることである。
近年のテキスト・ツー・イメージ生成モデルでは,テキスト概念に関する細部から意味のある視覚概念が生成されている。
本研究では、学習可能な品質対応テキストプロンプトと画像のアライメントの程度を理解することにより、一般化されたIQAに対してそのような拡散モデルのデノベーションプロセスを利用する。
論文 参考訳(メタデータ) (2024-06-07T05:46:39Z) - Descriptive Image Quality Assessment in the Wild [25.503311093471076]
VLMに基づく画像品質評価(IQA)は、画像品質を言語的に記述し、人間の表現に合わせることを目指している。
野生における画像品質評価(DepictQA-Wild)について紹介する。
本手法は,評価タスクと比較タスク,簡潔かつ詳細な応答,完全参照,非参照シナリオを含む多機能IQAタスクパラダイムを含む。
論文 参考訳(メタデータ) (2024-05-29T07:49:15Z) - Opinion-Unaware Blind Image Quality Assessment using Multi-Scale Deep Feature Statistics [54.08757792080732]
我々は,事前学習された視覚モデルからの深い特徴を統計的解析モデルと統合して,意見認識のないBIQA(OU-BIQA)を実現することを提案する。
提案モデルは,最先端のBIQAモデルと比較して,人間の視覚的知覚との整合性に優れる。
論文 参考訳(メタデータ) (2024-05-29T06:09:34Z) - Multi-Modal Prompt Learning on Blind Image Quality Assessment [65.0676908930946]
画像品質評価(IQA)モデルは意味情報から大きな恩恵を受け、異なる種類のオブジェクトを明瞭に扱うことができる。
十分な注釈付きデータが不足している従来の手法では、セマンティックな認識を得るために、CLIPイメージテキスト事前学習モデルをバックボーンとして使用していた。
近年のアプローチでは、このミスマッチに即時技術を使って対処する試みがあるが、これらの解決策には欠点がある。
本稿では、IQAのための革新的なマルチモーダルプロンプトベースの手法を提案する。
論文 参考訳(メタデータ) (2024-04-23T11:45:32Z) - Contrastive Pre-Training with Multi-View Fusion for No-Reference Point Cloud Quality Assessment [49.36799270585947]
No-Reference Point Cloud Quality Assessment (NR-PCQA) は、歪んだ点雲の知覚的品質を、参照なしで自動的に評価することを目的としている。
我々は,PCQA(CoPA)に適した新しいコントラスト付き事前学習フレームワークを提案する。
提案手法は,最新のPCQA手法よりも高い性能を示す。
論文 参考訳(メタデータ) (2024-03-15T07:16:07Z) - Diffusion Model Based Visual Compensation Guidance and Visual Difference
Analysis for No-Reference Image Quality Assessment [82.13830107682232]
本稿では, 複雑な関係をモデル化する能力を示す, 最先端(SOTA)生成モデルを提案する。
生成した拡張画像とノイズを含む画像を利用する新しい拡散復元ネットワークを考案する。
2つの視覚評価枝は、得られた高レベル特徴情報を包括的に解析するように設計されている。
論文 参考訳(メタデータ) (2024-02-22T09:39:46Z) - Transformer-based No-Reference Image Quality Assessment via Supervised
Contrastive Learning [36.695247860715874]
本稿では,新しいコントラスト学習 (Contrastive Learning, SCL) と NR-IQA モデル SaTQA を提案する。
まず、SCLによる大規模合成データセット上にモデルをトレーニングし、様々な歪みタイプとレベルの画像の劣化特徴を抽出する。
画像から歪み情報を抽出するために,CNNインダクティブバイアスとTransformerの長期依存性モデリング機能を組み合わせることで,マルチストリームブロック(MSB)を組み込んだバックボーンネットワークを提案する。
7つの標準IQAデータセットの実験結果から、SaTQAは合成データセットと認証データセットの両方において最先端の手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-12-12T06:01:41Z) - MD-IQA: Learning Multi-scale Distributed Image Quality Assessment with
Semi Supervised Learning for Low Dose CT [6.158876574189994]
画像品質評価(IQA)は放射線線量最適化と新しい医用イメージング技術開発において重要な役割を担っている。
最近の深層学習に基づくアプローチは、強力なモデリング能力と医療IQAの可能性を示している。
本稿では,出力分布を制約して品質スコアを予測するため,マルチスケール分布回帰手法を提案する。
論文 参考訳(メタデータ) (2023-11-14T09:33:33Z) - No-Reference Image Quality Assessment via Feature Fusion and Multi-Task
Learning [29.19484863898778]
ブラインドまたはノン参照画像品質評価(NR-IQA)は基本的な問題であり、未解決であり、難しい問題である。
マルチタスク学習に基づく簡易かつ効果的な汎用的ノンリフレクション(NR)画像品質評価フレームワークを提案する。
このモデルでは、歪み型と主観的な人間のスコアを用いて画質を推定する。
論文 参考訳(メタデータ) (2020-06-06T05:04:10Z) - Uncertainty-Aware Blind Image Quality Assessment in the Laboratory and
Wild [98.48284827503409]
我々は,テキスト化BIQAモデルを開発し,それを合成的および現実的歪みの両方で訓練するアプローチを提案する。
我々は、多数の画像ペアに対してBIQAのためのディープニューラルネットワークを最適化するために、忠実度損失を用いる。
6つのIQAデータベースの実験は、実験室と野生動物における画像品質を盲目的に評価する学習手法の可能性を示唆している。
論文 参考訳(メタデータ) (2020-05-28T13:35:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。