論文の概要: Linguistic Landscape of Generative AI Perception: A Global Twitter Analysis Across 14 Languages
- arxiv url: http://arxiv.org/abs/2405.20037v1
- Date: Thu, 30 May 2024 13:19:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 14:18:37.758197
- Title: Linguistic Landscape of Generative AI Perception: A Global Twitter Analysis Across 14 Languages
- Title(参考訳): ジェネレーティブAI知覚の言語的ランドスケープ:14言語にわたるグローバルTwitter分析
- Authors: Taichi Murayama, Kunihiro Miyazaki, Yasuko Matsubara, Yasushi Sakurai,
- Abstract要約: 私たちは14の言語で680万以上のツイートを分析しました。
本研究は,言語固有のニュアンスを伴って,生成AIの認識のグローバルな傾向を明らかにした。
- 参考スコア(独自算出の注目度): 6.278517495094834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of generative AI tools has had a profound impact on societies globally, transcending geographical boundaries. Understanding these tools' global reception and utilization is crucial for service providers and policymakers in shaping future policies. Therefore, to unravel the perceptions and engagements of individuals within diverse linguistic communities with regard to generative AI tools, we extensively analyzed over 6.8 million tweets in 14 different languages. Our findings reveal a global trend in the perception of generative AI, accompanied by language-specific nuances. While sentiments toward these tools vary significantly across languages, there is a prevalent positive inclination toward Image tools and a negative one toward Chat tools. Notably, the ban of ChatGPT in Italy led to a sentiment decline and initiated discussions across languages. Furthermore, we established a taxonomy for interactions with chatbots, creating a framework for social analysis underscoring variations in generative AI usage among linguistic communities. We find that the Chinese community predominantly employs chatbots as substitutes for search, while the Italian community tends to present more intricate prompts. Our research provides a robust foundation for further explorations of the social dynamics surrounding generative AI tools and offers invaluable insights for decision-makers in policy, technology, and education.
- Abstract(参考訳): 生成型AIツールの出現は、世界社会に大きな影響を与え、地理的境界を越えている。
これらのツールのグローバルレセプションと利用を理解することは、サービス提供者や政策立案者にとって、今後の政策を形成する上で不可欠である。
そこで、生成的AIツールに関して、多様な言語コミュニティ内の個人の認識と関与を明らかにするために、14の言語で680万以上のツイートを広範囲に分析した。
本研究は,言語固有のニュアンスを伴って,生成AIの認識のグローバルな傾向を明らかにした。
これらのツールに対する感情は言語によって大きく異なるが、イメージツールに対する肯定的な傾向があり、Chatツールに対する否定的な傾向がある。
特にイタリアにおけるChatGPTの禁止は、感情の低下を招き、言語間の議論を開始した。
さらに,チャットボットと対話するための分類法を確立し,言語コミュニティにおける生成的AI利用の変動を社会的分析の枠組みを構築した。
中国のコミュニティはおもに検索の代用としてチャットボットを採用しており、イタリアのコミュニティはより複雑なプロンプトを提示する傾向にある。
我々の研究は、生成型AIツールを取り巻く社会的ダイナミクスのさらなる探索のための堅牢な基盤を提供し、政策、技術、教育における意思決定者にとって貴重な洞察を提供する。
関連論文リスト
- Harnessing the Power of Artificial Intelligence to Vitalize Endangered Indigenous Languages: Technologies and Experiences [31.62071644137294]
我々は、世界の言語の多様性の低下と、AIとNLPに固有の倫理的課題をもたらすインディジェネラル言語について論じる。
Indigenous Language のための高品質な機械学習トランスレータの開発に励む成果を報告する。
私たちは2023年と2024年にブラジルの先住民コミュニティで実施したプロジェクトで構築したプロトタイプを紹介します。
論文 参考訳(メタデータ) (2024-07-17T14:46:37Z) - Language Model Alignment in Multilingual Trolley Problems [138.5684081822807]
Moral Machine 実験に基づいて,MultiTP と呼ばれる100以上の言語でモラルジレンマヴィグネットの言語間コーパスを開発する。
分析では、19の異なるLLMと人間の判断を一致させ、6つのモラル次元をまたいだ嗜好を捉えた。
我々は、AIシステムにおける一様道徳的推論の仮定に挑戦し、言語間のアライメントの顕著なばらつきを発見した。
論文 参考訳(メタデータ) (2024-07-02T14:02:53Z) - Advancing Social Intelligence in AI Agents: Technical Challenges and Open Questions [67.60397632819202]
ソーシャルインテリジェントAIエージェント(Social-AI)の構築は、多分野、マルチモーダルな研究目標である。
我々は、社会AIを前進させるために、基礎となる技術的課題と、コンピューティングコミュニティ全体にわたる研究者のためのオープンな質問を特定します。
論文 参考訳(メタデータ) (2024-04-17T02:57:42Z) - Distributed agency in second language learning and teaching through generative AI [0.0]
ChatGPTは、テキストまたは音声形式のチャットを通じて非公式な第二言語プラクティスを提供することができる。
インストラクタはAIを使って、さまざまなメディアで学習と評価材料を構築することができる。
論文 参考訳(メタデータ) (2024-03-29T14:55:40Z) - Factuality Challenges in the Era of Large Language Models [113.3282633305118]
大規模言語モデル(LLM)は、誤った、誤った、あるいは誤解を招くコンテンツを生成する。
LLMは悪意のあるアプリケーションに利用することができる。
これは、ユーザーを欺く可能性があるという点で、社会に重大な課題をもたらす。
論文 参考訳(メタデータ) (2023-10-08T14:55:02Z) - Learning to Model the World with Language [100.76069091703505]
人間と対話し、世界で行動するためには、エージェントは人々が使用する言語の範囲を理解し、それを視覚の世界に関連付ける必要がある。
私たちのキーとなるアイデアは、エージェントが将来を予測するのに役立つ信号として、このような多様な言語を解釈すべきである、ということです。
我々は、将来のテキストや画像表現を予測するマルチモーダル世界モデルを学ぶエージェントであるDynalangでこれをインスタンス化する。
論文 参考訳(メタデータ) (2023-07-31T17:57:49Z) - Towards Bridging the Digital Language Divide [4.234367850767171]
多言語言語処理システムは、しばしばハードワイヤで、通常不随意で、特定の言語に対して隠された表現的嗜好を示す。
偏りのある技術は、しばしば表現される言語の複雑さに不公平な研究・開発手法の結果であることを示す。
我々は,技術設計と方法論の両面から,言語バイアスを減らすことを目的とした新しいイニシアティブを提案する。
論文 参考訳(メタデータ) (2023-07-25T10:53:20Z) - Systematic Review for AI-based Language Learning Tools [0.0]
このレビューは、2017年から2020年にかけて開発されたAIツールに関する情報を合成した。
これらのツールの大部分は、機械学習と自然言語処理を利用している。
これらのツールを使用した後、学習者は言語能力と知識の向上を実演した。
論文 参考訳(メタデータ) (2021-10-29T11:54:51Z) - Systematic Inequalities in Language Technology Performance across the
World's Languages [94.65681336393425]
本稿では,言語技術のグローバルな有用性を評価するためのフレームワークを紹介する。
本分析では, ユーザ対応技術と言語的NLPタスクの両面において, より深く研究されている。
論文 参考訳(メタデータ) (2021-10-13T14:03:07Z) - SocialAI 0.1: Towards a Benchmark to Stimulate Research on
Socio-Cognitive Abilities in Deep Reinforcement Learning Agents [23.719833581321033]
人間との社会的相互作用に参加できる体型自律エージェントを構築することは、AIの主要な課題の1つです。
現在のアプローチは、非常に単純で非多様な社会状況におけるコミュニケーションツールとして言語に焦点を当てています。
人間レベルのAIを目指すためには、より広範な社会的スキルが必要であると私たちは主張します。
論文 参考訳(メタデータ) (2021-04-27T14:16:29Z) - Can You be More Social? Injecting Politeness and Positivity into
Task-Oriented Conversational Agents [60.27066549589362]
人間エージェントが使用する社会言語は、ユーザーの応答性の向上とタスク完了に関連しています。
このモデルは、ソーシャル言語理解要素で拡張されたシーケンスからシーケンスまでのディープラーニングアーキテクチャを使用する。
人的判断と自動言語尺度の両方を用いたコンテンツ保存と社会言語レベルの評価は,エージェントがより社会的に適切な方法でユーザの問題に対処できる応答を生成できることを示している。
論文 参考訳(メタデータ) (2020-12-29T08:22:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。