論文の概要: Distributed agency in second language learning and teaching through generative AI
- arxiv url: http://arxiv.org/abs/2403.20216v4
- Date: Fri, 31 May 2024 14:17:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 19:33:06.339557
- Title: Distributed agency in second language learning and teaching through generative AI
- Title(参考訳): 第二言語学習における分散型エージェントと生成AIによる教育
- Authors: Robert Godwin-Jones,
- Abstract要約: ChatGPTは、テキストまたは音声形式のチャットを通じて非公式な第二言語プラクティスを提供することができる。
インストラクタはAIを使って、さまざまなメディアで学習と評価材料を構築することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Generative AI offers significant opportunities for language learning. Tools like ChatGPT can provide informal second language practice through chats in written or voice forms, with the learner specifying through prompts conversational parameters such as proficiency level, language register, and discussion topics. AI can be instructed to give corrective feedback, create practice exercises, or develop an extended study plan. Instructors can use AI to build learning and assessment materials in a variety of media. AI is likely to make immersive technologies more powerful and versatile, moving away from scripted interactions. For both learners and teachers, it is important to understand the limitations of AI systems that arise from their purely statistical model of human language, which limits their ability to deal with nuanced social and cultural aspects of language use. Additionally, there are ethical concerns over how AI systems are created as well as practical constraints in their use, especially for less privileged populations. The power and versatility of AI tools are likely to turn them into valuable and constant companions in many peoples lives (akin to smartphones), creating a close connection that goes beyond simple tool use. Ecological theories such as sociomaterialism are helpful in examining the shared agency that develops through close user-AI interactions, as are the perspectives on human-object relations from Indigenous cultures.
- Abstract(参考訳): 生成AIは、言語学習に重要な機会を提供する。
ChatGPTのようなツールは、文章や音声形式のチャットを通じて非公式の第二言語プラクティスを提供することができ、学習者は習熟度、言語レジスタ、議論トピックなどの会話パラメータを指示する。
AIは、修正的なフィードバックを与えたり、実践演習を作成したり、拡張された研究計画を開発するように指示することができる。
インストラクタはAIを使って、さまざまなメディアで学習と評価材料を構築することができる。
AIは没入型技術をより強力で多用途にし、スクリプトによるインタラクションから遠ざかる可能性が高い。
学習者と教師の双方にとって、純粋に統計的に人間の言語モデルから生じるAIシステムの限界を理解することが重要である。
さらに、AIシステムの構築方法に関する倫理的な懸念や、その使用に関する実践的な制約、特に特権の少ない人口に対する懸念もある。
AIツールのパワーと汎用性は、多くの人々の生活において(スマートフォンと同じく)価値ある、絶え間ない仲間になり、単純なツールの使用以上の密接なつながりを生み出すだろう。
社会物質主義のような生態学理論は、密接なユーザーとAIの相互作用を通して発展する共有機関を調べるのに役立つ。
関連論文リスト
- Generative AI, Pragmatics, and Authenticity in Second Language Learning [0.0]
生成的AI(Artificial Intelligence)を言語学習と教育に統合する上で、明らかなメリットがある。
しかし、AIシステムが人間の言語に耐える方法のため、人間と同じ社会的認識を持つ言語を使えるような、生きた経験が欠けている。
言語や文化のバイアスは、そのトレーニングデータに基づいて構築されており、主に英語であり、主に西洋の情報源から来ている。
論文 参考訳(メタデータ) (2024-10-18T11:58:03Z) - Policy Learning with a Language Bottleneck [65.99843627646018]
PLLBB(Policy Learning with a Language Bottleneck)は、AIエージェントが言語規則を生成するためのフレームワークである。
PLLBBは、言語モデルによってガイドされるルール生成ステップと、エージェントがルールによってガイドされる新しいポリシーを学ぶ更新ステップとを交互に使用する。
2人のプレイヤーによるコミュニケーションゲーム、迷路解決タスク、および2つの画像再構成タスクにおいて、PLLBBエージェントはより解釈可能で一般化可能な振る舞いを学習できるだけでなく、学習したルールを人間のユーザと共有できることを示す。
論文 参考訳(メタデータ) (2024-05-07T08:40:21Z) - Untangling Critical Interaction with AI in Students Written Assessment [2.8078480738404]
重要な課題は、人間が必須の批判的思考とAIリテラシースキルを備えていることを保証することである。
本稿では,AIと批判的学習者インタラクションの概念を概念化するための第一歩を提供する。
理論的モデルと経験的データの両方を用いて、予備的な発見は、書き込みプロセス中にAIとのディープインタラクションが全般的に欠如していることを示唆している。
論文 参考訳(メタデータ) (2024-04-10T12:12:50Z) - Critical Appraisal of Artificial Intelligence-Mediated Communication [0.0]
この本は、言語教育におけるAIによるコミュニケーションの長所と短所について考察する。
言語教師がCALLの教師教育と専門的開発に従事して、進化を続けるテクノロジーの展望に追随し、その教育効果を向上させることが不可欠である、と論じている。
論文 参考訳(メタデータ) (2023-05-15T02:35:40Z) - HuggingGPT: Solving AI Tasks with ChatGPT and its Friends in Hugging
Face [85.25054021362232]
大規模言語モデル(LLM)は、言語理解、生成、相互作用、推論において例外的な能力を示した。
LLMは、複雑なAIタスクを解決するために既存のAIモデルを管理するコントローラとして機能する可能性がある。
本稿では,機械学習コミュニティのさまざまなAIモデルを接続するLLMエージェントであるHuggingGPTを紹介する。
論文 参考訳(メタデータ) (2023-03-30T17:48:28Z) - Build-a-Bot: Teaching Conversational AI Using a Transformer-Based Intent
Recognition and Question Answering Architecture [15.19996462016215]
本稿では、自然言語パイプラインを用いて、独自の学校カリキュラムに基づく質問に答えるためにカスタマイズされたモデルを訓練することで、人工知能の原理を学習するためのインタフェースを提案する。
このパイプラインは、AIエージェントを作成しながら、これらのプロセスのそれぞれを通じて、学生のデータ収集、データ拡張、意図認識、質問応答を教える。
論文 参考訳(メタデータ) (2022-12-14T22:57:44Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z) - Building Human-like Communicative Intelligence: A Grounded Perspective [1.0152838128195465]
言語学習における驚くべき進歩の後、AIシステムは人間のコミュニケーション能力の重要な側面を反映しない天井に近づいたようだ。
本稿は、ナチビストと象徴的パラダイムに基づく認知にインスパイアされたAIの方向性には、現代AIの進歩を導くために必要なサブストラテジと具体性がないことを示唆する。
本稿では,「地下」言語知能構築のための具体的かつ実装可能なコンポーネントのリストを提案する。
論文 参考訳(メタデータ) (2022-01-02T01:43:24Z) - A User-Centred Framework for Explainable Artificial Intelligence in
Human-Robot Interaction [70.11080854486953]
本稿では,XAIのソーシャル・インタラクティブな側面に着目したユーザ中心型フレームワークを提案する。
このフレームワークは、エキスパートでないユーザのために考えられた対話型XAIソリューションのための構造を提供することを目的としている。
論文 参考訳(メタデータ) (2021-09-27T09:56:23Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - Future Trends for Human-AI Collaboration: A Comprehensive Taxonomy of
AI/AGI Using Multiple Intelligences and Learning Styles [95.58955174499371]
我々は、複数の人間の知性と学習スタイルの様々な側面を説明し、様々なAI問題領域に影響を及ぼす可能性がある。
未来のAIシステムは、人間のユーザと互いにコミュニケーションするだけでなく、知識と知恵を効率的に交換できる。
論文 参考訳(メタデータ) (2020-08-07T21:00:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。