A Point-Neighborhood Learning Framework for Nasal Endoscope Image Segmentation
- URL: http://arxiv.org/abs/2405.20044v1
- Date: Thu, 30 May 2024 13:25:25 GMT
- Title: A Point-Neighborhood Learning Framework for Nasal Endoscope Image Segmentation
- Authors: Pengyu Jie, Wanquan Liu, Chenqiang Gao, Yihui Wen, Rui He, Pengcheng Li, Jintao Zhang, Deyu Meng,
- Abstract summary: We propose a weakly semi-supervised method called Point-Neighborhood Learning (PNL) framework.
To mine the prior of the pixels surrounding the annotated point, we transform a single-point annotation into a circular area named a point-neighborhood.
Our method greatly improves performance without changing the structure of segmentation network.
- Score: 43.0260204534598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The lesion segmentation on endoscopic images is challenging due to its complex and ambiguous features. Fully-supervised deep learning segmentation methods can receive good performance based on entirely pixel-level labeled dataset but greatly increase experts' labeling burden. Semi-supervised and weakly supervised methods can ease labeling burden, but heavily strengthen the learning difficulty. To alleviate this difficulty, weakly semi-supervised segmentation adopts a new annotation protocol of adding a large number of point annotation samples into a few pixel-level annotation samples. However, existing methods only mine points' limited information while ignoring reliable prior surrounding the point annotations. In this paper, we propose a weakly semi-supervised method called Point-Neighborhood Learning (PNL) framework. To mine the prior of the pixels surrounding the annotated point, we transform a single-point annotation into a circular area named a point-neighborhood. We propose point-neighborhood supervision loss and pseudo-label scoring mechanism to enhance training supervision. Point-neighborhoods are also used to augment the data diversity. Our method greatly improves performance without changing the structure of segmentation network. Comprehensive experiments show the superiority of our method over the other existing methods, demonstrating its effectiveness in point-annotated medical images. The project code will be available on: https://github.com/ParryJay/PNL.
Related papers
- Learning Semantic Segmentation with Query Points Supervision on Aerial Images [57.09251327650334]
We present a weakly supervised learning algorithm to train semantic segmentation algorithms.
Our proposed approach performs accurate semantic segmentation and improves efficiency by significantly reducing the cost and time required for manual annotation.
arXiv Detail & Related papers (2023-09-11T14:32:04Z) - Weakly Supervised 3D Instance Segmentation without Instance-level
Annotations [57.615325809883636]
3D semantic scene understanding tasks have achieved great success with the emergence of deep learning, but often require a huge amount of manually annotated training data.
We propose the first weakly-supervised 3D instance segmentation method that only requires categorical semantic labels as supervision.
By generating pseudo instance labels from categorical semantic labels, our designed approach can also assist existing methods for learning 3D instance segmentation at reduced annotation cost.
arXiv Detail & Related papers (2023-08-03T12:30:52Z) - Cyclic Learning: Bridging Image-level Labels and Nuclei Instance
Segmentation [19.526504045149895]
We propose a novel image-level weakly supervised method, called cyclic learning, to solve this problem.
Cyclic learning comprises a front-end classification task and a back-end semi-supervised instance segmentation task.
Experiments on three datasets demonstrate the good generality of our method, which outperforms other image-level weakly supervised methods for nuclei instance segmentation.
arXiv Detail & Related papers (2023-06-05T08:32:12Z) - Weakly Supervised Semantic Segmentation for Large-Scale Point Cloud [69.36717778451667]
Existing methods for large-scale point cloud semantic segmentation require expensive, tedious and error-prone manual point-wise annotations.
We propose an effective weakly supervised method containing two components to solve the problem.
The experimental results show the large gain against existing weakly supervised and comparable results to fully supervised methods.
arXiv Detail & Related papers (2022-12-09T09:42:26Z) - Pointly-Supervised Panoptic Segmentation [106.68888377104886]
We propose a new approach to applying point-level annotations for weakly-supervised panoptic segmentation.
Instead of the dense pixel-level labels used by fully supervised methods, point-level labels only provide a single point for each target as supervision.
We formulate the problem in an end-to-end framework by simultaneously generating panoptic pseudo-masks from point-level labels and learning from them.
arXiv Detail & Related papers (2022-10-25T12:03:51Z) - Point-Teaching: Weakly Semi-Supervised Object Detection with Point
Annotations [81.02347863372364]
We present Point-Teaching, a weakly semi-supervised object detection framework.
Specifically, we propose a Hungarian-based point matching method to generate pseudo labels for point annotated images.
We propose a simple-yet-effective data augmentation, termed point-guided copy-paste, to reduce the impact of the unmatched points.
arXiv Detail & Related papers (2022-06-01T07:04:38Z) - Few-Shot Semantic Segmentation Augmented with Image-Level Weak
Annotations [23.02986307143718]
Recent progress in fewshot semantic segmentation tackles the issue by only a few pixel-level annotated examples.
Our key idea is to learn a better prototype representation of the class by fusing the knowledge from the image-level labeled data.
We propose a new framework, called PAIA, to learn the class prototype representation in a metric space by integrating image-level annotations.
arXiv Detail & Related papers (2020-07-03T04:58:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.