Annotation-Efficient Polyp Segmentation via Active Learning
- URL: http://arxiv.org/abs/2403.14350v1
- Date: Thu, 21 Mar 2024 12:25:17 GMT
- Title: Annotation-Efficient Polyp Segmentation via Active Learning
- Authors: Duojun Huang, Xinyu Xiong, De-Jun Fan, Feng Gao, Xiao-Jian Wu, Guanbin Li,
- Abstract summary: We propose a deep active learning framework for annotation-efficient polyp segmentation.
In practice, we measure the uncertainty of each sample by examining the similarity between features masked by the prediction map of the polyp and the background area.
We show that our proposed method achieved state-of-the-art performance compared to other competitors on both a public dataset and a large-scale in-house dataset.
- Score: 45.59503015577479
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning-based techniques have proven effective in polyp segmentation tasks when provided with sufficient pixel-wise labeled data. However, the high cost of manual annotation has created a bottleneck for model generalization. To minimize annotation costs, we propose a deep active learning framework for annotation-efficient polyp segmentation. In practice, we measure the uncertainty of each sample by examining the similarity between features masked by the prediction map of the polyp and the background area. Since the segmentation model tends to perform weak in samples with indistinguishable features of foreground and background areas, uncertainty sampling facilitates the fitting of under-learning data. Furthermore, clustering image-level features weighted by uncertainty identify samples that are both uncertain and representative. To enhance the selectivity of the active selection strategy, we propose a novel unsupervised feature discrepancy learning mechanism. The selection strategy and feature optimization work in tandem to achieve optimal performance with a limited annotation budget. Extensive experimental results have demonstrated that our proposed method achieved state-of-the-art performance compared to other competitors on both a public dataset and a large-scale in-house dataset.
Related papers
- Maximally Separated Active Learning [32.98415531556376]
We propose an active learning method that utilizes fixed equiangular hyperspherical points as class prototypes.
We demonstrate strong performance over existing active learning techniques across five benchmark datasets.
arXiv Detail & Related papers (2024-11-26T14:02:43Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data.
One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is.
This paper proposes the it least disagree metric (LDM) as the smallest probability of disagreement of the predicted label.
arXiv Detail & Related papers (2024-01-18T08:12:23Z) - Optimal Sample Selection Through Uncertainty Estimation and Its
Application in Deep Learning [22.410220040736235]
We present a theoretically optimal solution for addressing both coreset selection and active learning.
Our proposed method, COPS, is designed to minimize the expected loss of a model trained on subsampled data.
arXiv Detail & Related papers (2023-09-05T14:06:33Z) - Temporal Output Discrepancy for Loss Estimation-based Active Learning [65.93767110342502]
We present a novel deep active learning approach that queries the oracle for data annotation when the unlabeled sample is believed to incorporate high loss.
Our approach achieves superior performances than the state-of-the-art active learning methods on image classification and semantic segmentation tasks.
arXiv Detail & Related papers (2022-12-20T19:29:37Z) - Active Pointly-Supervised Instance Segmentation [106.38955769817747]
We present an economic active learning setting, named active pointly-supervised instance segmentation (APIS)
APIS starts with box-level annotations and iteratively samples a point within the box and asks if it falls on the object.
The model developed with these strategies yields consistent performance gain on the challenging MS-COCO dataset.
arXiv Detail & Related papers (2022-07-23T11:25:24Z) - Leveraging Ensembles and Self-Supervised Learning for Fully-Unsupervised
Person Re-Identification and Text Authorship Attribution [77.85461690214551]
Learning from fully-unlabeled data is challenging in Multimedia Forensics problems, such as Person Re-Identification and Text Authorship Attribution.
Recent self-supervised learning methods have shown to be effective when dealing with fully-unlabeled data in cases where the underlying classes have significant semantic differences.
We propose a strategy to tackle Person Re-Identification and Text Authorship Attribution by enabling learning from unlabeled data even when samples from different classes are not prominently diverse.
arXiv Detail & Related papers (2022-02-07T13:08:11Z) - Clustering augmented Self-Supervised Learning: Anapplication to Land
Cover Mapping [10.720852987343896]
We introduce a new method for land cover mapping by using a clustering based pretext task for self-supervised learning.
We demonstrate the effectiveness of the method on two societally relevant applications.
arXiv Detail & Related papers (2021-08-16T19:35:43Z) - Semi-supervised Active Learning for Instance Segmentation via Scoring
Predictions [25.408505612498423]
We propose a novel and principled semi-supervised active learning framework for instance segmentation.
Specifically, we present an uncertainty sampling strategy named Triplet Scoring Predictions (TSP) to explicitly incorporate samples ranking clues from classes, bounding boxes and masks.
Results on medical images datasets demonstrate that the proposed method results in the embodiment of knowledge from available data in a meaningful way.
arXiv Detail & Related papers (2020-12-09T02:36:52Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.