Separation and Collapse of Equilibria Inequalities on AND-OR Trees without Shape Constraints
- URL: http://arxiv.org/abs/2405.20138v2
- Date: Tue, 01 Oct 2024 09:11:53 GMT
- Title: Separation and Collapse of Equilibria Inequalities on AND-OR Trees without Shape Constraints
- Authors: Fuki Ito, Toshio Suzuki,
- Abstract summary: We investigate the zero-error randomized complexity, which is the least cost against the worst input, of AND-OR tree computation.
directional algorithms are known to achieve the randomized complexity.
We show that for any AND-OR tree, randomized depth-first algorithms, have the same equilibrium as that of the directional algorithms.
- Score: 0.0
- License:
- Abstract: Herein, we investigate the zero-error randomized complexity, which is the least cost against the worst input, of AND-OR tree computation by imposing various restrictions on the algorithm to find the Boolean value of the root of that tree and no restrictions on the tree shape. When a tree satisfies a certain condition regarding its symmetry, directional algorithms proposed by Saks and Wigderson (1986), special randomized algorithms, are known to achieve the randomized complexity. Furthermore, there is a known example of a tree that is so unbalanced that no directional algorithm achieves the randomized complexity (Vereshchagin 1998). In this study, we aim to identify where deviations arise between the general randomized Boolean decision tree and its special case, directional algorithms. In this paper, we show that for any AND-OR tree, randomized depth-first algorithms, which form a broader class compared with directional algorithms, have the same equilibrium as that of the directional algorithms. Thus, we get the collapse result on equilibria inequalities that holds for an arbitrary AND-OR tree. This implies that there exists a case where even depth-first algorithms cannot be the fastest, leading to the separation result on equilibria inequality. Additionally, a new algorithm is introduced as a key concept for proof of the separation result.
Related papers
- On Universally Optimal Algorithms for A/B Testing [49.429419538826444]
We study the problem of best-arm identification with fixed budget in multi-armed bandits with Bernoulli rewards.
For the problem with two arms, also known as the A/B testing problem, we prove that there is no algorithm that performs as well as the algorithm sampling each arm equally.
arXiv Detail & Related papers (2023-08-23T08:38:53Z) - HARRIS: Hybrid Ranking and Regression Forests for Algorithm Selection [75.84584400866254]
We propose a new algorithm selector leveraging special forests, combining the strengths of both approaches while alleviating their weaknesses.
HARRIS' decisions are based on a forest model, whose trees are created based on optimized on a hybrid ranking and regression loss function.
arXiv Detail & Related papers (2022-10-31T14:06:11Z) - Regularized impurity reduction: Accurate decision trees with complexity
guarantees [20.170305081348328]
We propose a tree-induction algorithm that gives a logarithmic approximation guarantee on the tree complexity.
The enhanced algorithms strike an excellent balance between predictive accuracy and tree complexity.
arXiv Detail & Related papers (2022-08-23T13:15:19Z) - Unbiased and Efficient Sampling of Dependency Trees [0.0]
Most treebanks require that every valid dependency tree has a single edge coming out of the ROOT node.
Zmigrod et al. have recently proposed algorithms for sampling with and without replacement from the single-root dependency tree distribution.
We show that their fastest algorithm for sampling with replacement, Wilson-RC, is in fact biased.
arXiv Detail & Related papers (2022-05-25T09:57:28Z) - Mean-based Best Arm Identification in Stochastic Bandits under Reward
Contamination [80.53485617514707]
This paper proposes two algorithms, a gap-based algorithm and one based on the successive elimination, for best arm identification in sub-Gaussian bandits.
Specifically, for the gap-based algorithm, the sample complexity is optimal up to constant factors, while for the successive elimination, it is optimal up to logarithmic factors.
arXiv Detail & Related papers (2021-11-14T21:49:58Z) - SGA: A Robust Algorithm for Partial Recovery of Tree-Structured
Graphical Models with Noisy Samples [75.32013242448151]
We consider learning Ising tree models when the observations from the nodes are corrupted by independent but non-identically distributed noise.
Katiyar et al. (2020) showed that although the exact tree structure cannot be recovered, one can recover a partial tree structure.
We propose Symmetrized Geometric Averaging (SGA), a more statistically robust algorithm for partial tree recovery.
arXiv Detail & Related papers (2021-01-22T01:57:35Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Efficient Computation of Expectations under Spanning Tree Distributions [67.71280539312536]
We propose unified algorithms for the important cases of first-order expectations and second-order expectations in edge-factored, non-projective spanning-tree models.
Our algorithms exploit a fundamental connection between gradients and expectations, which allows us to derive efficient algorithms.
arXiv Detail & Related papers (2020-08-29T14:58:26Z) - Robust Estimation of Tree Structured Ising Models [20.224160348675422]
We consider the task of learning Ising models when the signs of different random variables are flipped independently with possibly unequal, unknown probabilities.
We first prove that this problem is unidentifiable, however, this unidentifiability is limited to a small equivalence class of trees formed by leaf nodes exchanging positions with their neighbors.
arXiv Detail & Related papers (2020-06-10T01:32:45Z) - Born-Again Tree Ensembles [9.307453801175177]
Tree ensembles offer a good prediction quality in various domains, but the concurrent use of multiple trees reduces the interpretability of the ensemble.
We study the process of constructing a single decision tree of minimum size that reproduces the exact same behavior as a given tree ensemble in its entire feature space.
This algorithm generates optimal born-again trees for many datasets of practical interest.
arXiv Detail & Related papers (2020-03-24T22:17:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.