MSSC-BiMamba: Multimodal Sleep Stage Classification and Early Diagnosis of Sleep Disorders with Bidirectional Mamba
- URL: http://arxiv.org/abs/2405.20142v2
- Date: Fri, 31 May 2024 03:31:23 GMT
- Title: MSSC-BiMamba: Multimodal Sleep Stage Classification and Early Diagnosis of Sleep Disorders with Bidirectional Mamba
- Authors: Chao Zhang, Weirong Cui, Jingjing Guo,
- Abstract summary: We develop an automated model for sleep staging and disorder classification to enhance diagnostic accuracy and efficiency.
Considering the characteristics of polysomnography (PSG) multi-lead sleep monitoring, we designed a multimodal sleep state classification model, MSSC-BiMamba.
The model is the first to apply BiMamba to sleep staging with multimodal PSG data, showing substantial gains in computational and memory efficiency.
- Score: 5.606144017978037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monitoring sleep states is essential for evaluating sleep quality and diagnosing sleep disorders. Traditional manual staging is time-consuming and prone to subjective bias, often resulting in inconsistent outcomes. Here, we developed an automated model for sleep staging and disorder classification to enhance diagnostic accuracy and efficiency. Considering the characteristics of polysomnography (PSG) multi-lead sleep monitoring, we designed a multimodal sleep state classification model, MSSC-BiMamba, that combines an Efficient Channel Attention (ECA) mechanism with a Bidirectional State Space Model (BSSM). The ECA module allows for weighting data from different sensor channels, thereby amplifying the influence of diverse sensor inputs. Additionally, the implementation of bidirectional Mamba (BiMamba) enables the model to effectively capture the multidimensional features and long-range dependencies of PSG data. The developed model demonstrated impressive performance on sleep stage classification tasks on both the ISRUC-S3 and ISRUC-S1 datasets, respectively containing data with healthy and unhealthy sleep patterns. Also, the model exhibited a high accuracy for sleep health prediction when evaluated on a combined dataset consisting of ISRUC and Sleep-EDF. Our model, which can effectively handle diverse sleep conditions, is the first to apply BiMamba to sleep staging with multimodal PSG data, showing substantial gains in computational and memory efficiency over traditional Transformer-style models. This method enhances sleep health management by making monitoring more accessible and extending advanced healthcare through innovative technology.
Related papers
- PMT: Progressive Mean Teacher via Exploring Temporal Consistency for Semi-Supervised Medical Image Segmentation [51.509573838103854]
We propose a semi-supervised learning framework, termed Progressive Mean Teachers (PMT), for medical image segmentation.
Our PMT generates high-fidelity pseudo labels by learning robust and diverse features in the training process.
Experimental results on two datasets with different modalities, i.e., CT and MRI, demonstrate that our method outperforms the state-of-the-art medical image segmentation approaches.
arXiv Detail & Related papers (2024-09-08T15:02:25Z) - Enhancing Healthcare with EOG: A Novel Approach to Sleep Stage
Classification [1.565361244756411]
We introduce an innovative approach to automated sleep stage classification using EOG signals, addressing the discomfort and impracticality associated with EEG data acquisition.
Our proposed SE-Resnet-Transformer model provides an accurate classification of five distinct sleep stages from raw EOG signal.
arXiv Detail & Related papers (2023-09-25T16:23:39Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - CoRe-Sleep: A Multimodal Fusion Framework for Time Series Robust to
Imperfect Modalities [10.347153539399836]
CoRe-Sleep is a Coordinated Representation multimodal fusion network.
We show how appropriately handling multimodal information can be the key to achieving such robustness.
This work aims at bridging the gap between automated analysis tools and their clinical utility.
arXiv Detail & Related papers (2023-03-27T18:28:58Z) - Sleep Model -- A Sequence Model for Predicting the Next Sleep Stage [18.059360820527687]
Sleep-stage classification using simple sensors, such as single-channel electroencephalography (EEG), electrooculography (EOG), electromyography (EMG) or electrocardiography (ECG) has gained substantial interest.
In this study, we proposed a sleep model that predicts the next sleep stage and used it to improve sleep classification accuracy.
arXiv Detail & Related papers (2023-02-17T07:37:54Z) - Sleep Activity Recognition and Characterization from Multi-Source
Passively Sensed Data [67.60224656603823]
Sleep Activity Recognition methods can provide indicators to assess, monitor, and characterize subjects' sleep-wake cycles and detect behavioral changes.
We propose a general method that continuously operates on passively sensed data from smartphones to characterize sleep and identify significant sleep episodes.
Thanks to their ubiquity, these devices constitute an excellent alternative data source to profile subjects' biorhythms in a continuous, objective, and non-invasive manner.
arXiv Detail & Related papers (2023-01-17T15:18:45Z) - A Closed-loop Sleep Modulation System with FPGA-Accelerated Deep
Learning [1.5569382274788235]
We develop a sleep modulation system that supports closed-loop operations on a low-power field-programmable gate array (FPGA) device.
Deep learning (DL) model is accelerated by a low-power field-programmable gate array (FPGA) device.
Model has been validated using a public sleep database containing 81 subjects, achieving a state-of-the-art classification accuracy of 85.8% and a F1-score of 79%.
arXiv Detail & Related papers (2022-11-19T01:47:53Z) - Heterogeneous Hidden Markov Models for Sleep Activity Recognition from
Multi-Source Passively Sensed Data [67.60224656603823]
Psychiatric patients' passive activity monitoring is crucial to detect behavioural shifts in real-time.
Sleep Activity Recognition constitutes a behavioural marker to portray patients' activity cycles.
Mobile passively sensed data captured from smartphones constitute an excellent alternative to profile patients' biorhythm.
arXiv Detail & Related papers (2022-11-08T17:29:40Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
Sleep problems are one of the major diseases all over the world.
Basic tool used by specialists is the Polysomnogram, which is a collection of different signals recorded during sleep.
Specialists have to score the different signals according to one of the standard guidelines.
arXiv Detail & Related papers (2021-03-30T09:59:56Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
We designed a single deep neural network architecture to jointly detect sleep events in a polysomnogram.
The performance of the model was quantified by F1, precision, and recall scores, and by correlating index values to clinical values.
arXiv Detail & Related papers (2021-01-07T13:08:44Z) - RobustSleepNet: Transfer learning for automated sleep staging at scale [0.0]
Sleep disorder diagnosis relies on the analysis of polysomnography (PSG) records.
In practice, sleep stage classification relies on the visual inspection of 30-seconds epochs of polysomnography signals.
We introduce RobustSleepNet, a deep learning model for automatic sleep stage classification able to handle arbitrary PSG montages.
arXiv Detail & Related papers (2021-01-07T09:39:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.