SleepGMUformer: A gated multimodal temporal neural network for sleep staging
- URL: http://arxiv.org/abs/2502.14227v1
- Date: Thu, 20 Feb 2025 03:42:42 GMT
- Title: SleepGMUformer: A gated multimodal temporal neural network for sleep staging
- Authors: Chenjun Zhao, Xuesen Niu, Xinglin Yu, Long Chen, Na Lv, Huiyu Zhou, Aite Zhao,
- Abstract summary: This paper proposes a gated temporal neural network for multidomain sleep data, including heart rate, motion, steps, EEG (Fpz-Cz, Pz-Oz), and EOG from WristHR-Motion-Sleep and SleepEDF-78.
The model integrates: 1) a pre-processing module for feature alignment, missing value handling, and EEG de-trending; 2) a feature extraction module for complex sleep features in the time dimension; and 3) a dynamic fusion module for real-time modality weighting.
- Score: 12.839348425917581
- License:
- Abstract: Sleep staging is a key method for assessing sleep quality and diagnosing sleep disorders. However, current deep learning methods face challenges: 1) postfusion techniques ignore the varying contributions of different modalities; 2) unprocessed sleep data can interfere with frequency-domain information. To tackle these issues, this paper proposes a gated multimodal temporal neural network for multidomain sleep data, including heart rate, motion, steps, EEG (Fpz-Cz, Pz-Oz), and EOG from WristHR-Motion-Sleep and SleepEDF-78. The model integrates: 1) a pre-processing module for feature alignment, missing value handling, and EEG de-trending; 2) a feature extraction module for complex sleep features in the time dimension; and 3) a dynamic fusion module for real-time modality weighting.Experiments show classification accuracies of 85.03% on SleepEDF-78 and 94.54% on WristHR-Motion-Sleep datasets. The model handles heterogeneous datasets and outperforms state-of-the-art models by 1.00%-4.00%.
Related papers
- MSSC-BiMamba: Multimodal Sleep Stage Classification and Early Diagnosis of Sleep Disorders with Bidirectional Mamba [5.606144017978037]
We develop an automated model for sleep staging and disorder classification to enhance diagnostic accuracy and efficiency.
Considering the characteristics of polysomnography (PSG) multi-lead sleep monitoring, we designed a multimodal sleep state classification model, MSSC-BiMamba.
The model is the first to apply BiMamba to sleep staging with multimodal PSG data, showing substantial gains in computational and memory efficiency.
arXiv Detail & Related papers (2024-05-30T15:16:53Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Continuous time recurrent neural networks: overview and application to
forecasting blood glucose in the intensive care unit [56.801856519460465]
Continuous time autoregressive recurrent neural networks (CTRNNs) are a deep learning model that account for irregular observations.
We demonstrate the application of these models to probabilistic forecasting of blood glucose in a critical care setting.
arXiv Detail & Related papers (2023-04-14T09:39:06Z) - L-SeqSleepNet: Whole-cycle Long Sequence Modelling for Automatic Sleep
Staging [16.96499618061823]
L-SeqSleepNet is a new deep learning model that takes into account whole-cycle sleep information for sleep staging.
L-SeqSleepNet is able to alleviate the predominance of N2 sleep to bring down errors in other sleep stages.
arXiv Detail & Related papers (2023-01-09T15:44:43Z) - A Closed-loop Sleep Modulation System with FPGA-Accelerated Deep
Learning [1.5569382274788235]
We develop a sleep modulation system that supports closed-loop operations on a low-power field-programmable gate array (FPGA) device.
Deep learning (DL) model is accelerated by a low-power field-programmable gate array (FPGA) device.
Model has been validated using a public sleep database containing 81 subjects, achieving a state-of-the-art classification accuracy of 85.8% and a F1-score of 79%.
arXiv Detail & Related papers (2022-11-19T01:47:53Z) - Sleep Staging Based on Serialized Dual Attention Network [0.0]
We propose a deep learning model SDAN based on raw EEG.
It serially combines the channel attention and spatial attention mechanisms to filter and highlight key information.
It achieves excellent results in the N1 sleep stage compared to other methods.
arXiv Detail & Related papers (2021-07-18T13:18:12Z) - Sleep syndromes onset detection based on automatic sleep staging
algorithm [0.0]
A Fast Fourier Transform is applied to 30 seconds long epochs of EEG recordings to provide localized time-frequency information.
A deep convolutional LSTM neural network is trained for sleep stage classification.
The code evaluation showed impressive results, reaching an accuracy of 86.43, precision of 77.76, recall of 93,32, F1-score of 89.12 with the final mean false error loss of 0.09.
arXiv Detail & Related papers (2021-07-07T15:38:47Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
Sleep problems are one of the major diseases all over the world.
Basic tool used by specialists is the Polysomnogram, which is a collection of different signals recorded during sleep.
Specialists have to score the different signals according to one of the standard guidelines.
arXiv Detail & Related papers (2021-03-30T09:59:56Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
We designed a single deep neural network architecture to jointly detect sleep events in a polysomnogram.
The performance of the model was quantified by F1, precision, and recall scores, and by correlating index values to clinical values.
arXiv Detail & Related papers (2021-01-07T13:08:44Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
Brief fragments of sleep shorter than 15 s are defined as microsleep episodes (MSEs)
maintenance of wakefulness test (MWT) is often used in a clinical setting to assess vigilance.
MSEs are mostly not considered in the absence of established scoring criteria defining MSEs.
We aimed for automatic detection of MSEs with machine learning based on raw EEG and EOG data as input.
arXiv Detail & Related papers (2020-09-07T11:38:40Z) - AutoHR: A Strong End-to-end Baseline for Remote Heart Rate Measurement
with Neural Searching [76.4844593082362]
We investigate the reason why existing end-to-end networks perform poorly in challenging conditions and establish a strong baseline for remote HR measurement with architecture search (NAS)
Comprehensive experiments are performed on three benchmark datasets on both intra-temporal and cross-dataset testing.
arXiv Detail & Related papers (2020-04-26T05:43:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.