論文の概要: Iterative Feature Boosting for Explainable Speech Emotion Recognition
- arxiv url: http://arxiv.org/abs/2405.20172v3
- Date: Wed, 5 Jun 2024 22:28:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 20:03:47.922048
- Title: Iterative Feature Boosting for Explainable Speech Emotion Recognition
- Title(参考訳): 説明可能な音声感情認識のための反復的特徴増強
- Authors: Alaa Nfissi, Wassim Bouachir, Nizar Bouguila, Brian Mishara,
- Abstract要約: 本稿では,効率的な特徴工学手法に基づく新しい教師付きSER手法を提案する。
特徴の関連性を評価し,特徴セットを洗練させるために,結果の説明可能性に特に注意を払っている。
提案手法は,TESSデータセット上での感情認識において,ヒトレベルのパフォーマンス(HLP)および最先端の機械学習手法より優れる。
- 参考スコア(独自算出の注目度): 17.568724398229232
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In speech emotion recognition (SER), using predefined features without considering their practical importance may lead to high dimensional datasets, including redundant and irrelevant information. Consequently, high-dimensional learning often results in decreasing model accuracy while increasing computational complexity. Our work underlines the importance of carefully considering and analyzing features in order to build efficient SER systems. We present a new supervised SER method based on an efficient feature engineering approach. We pay particular attention to the explainability of results to evaluate feature relevance and refine feature sets. This is performed iteratively through feature evaluation loop, using Shapley values to boost feature selection and improve overall framework performance. Our approach allows thus to balance the benefits between model performance and transparency. The proposed method outperforms human-level performance (HLP) and state-of-the-art machine learning methods in emotion recognition on the TESS dataset. The source code of this paper is publicly available at https://github.com/alaaNfissi/Iterative-Feature-Boosting-for-Explainable-Speech-Emotion-Recognition.
- Abstract(参考訳): 音声感情認識(SER)では、その実用的重要性を考慮せずに事前定義された特徴を用いることで、冗長で無関係な情報を含む高次元データセットが生成される可能性がある。
その結果、高次元学習はしばしば計算複雑性を増大させながらモデルの精度を低下させる。
本研究は,効率的なSERシステムを構築するために,特徴を慎重に検討し,分析することの重要性を浮き彫りにしている。
本稿では,効率的な特徴工学手法に基づく新しい教師付きSER手法を提案する。
特徴の関連性を評価し,特徴セットを洗練させるために,結果の説明可能性に特に注意を払っている。
これは機能評価ループを通じて反復的に実行され、Shapley値を使用して機能選択を強化し、フレームワーク全体のパフォーマンスを改善する。
このアプローチによって、モデルパフォーマンスと透明性のメリットのバランスが取れます。
提案手法は,TESSデータセット上での感情認識において,ヒトレベルのパフォーマンス(HLP)および最先端の機械学習手法より優れる。
本論文のソースコードはhttps://github.com/alaaNfissi/Iterative-Feature-Boosting-for-Explainable-Speech-Emotion-Recognitionで公開されている。
関連論文リスト
- Unveiling Hidden Factors: Explainable AI for Feature Boosting in Speech Emotion Recognition [17.568724398229232]
音声感情認識(SER)は、メンタルヘルス、教育、人間とコンピュータの相互作用など、いくつかの応用分野から注目されている。
本研究では,機械学習モデルの性能向上のための特徴関連性と説明可能性を強調した,SERの反復的特徴増強手法を提案する。
提案手法の有効性をトロントの感情音声セット(TESS)、ベルリンの感情音声データベース(EMO-DB)、Ryersonの感情音声データベース(RAVDESS)、Surrey Audio-Visual Expressed Emotioned Emotion(SAVEE)データセットのSERベンチマークで検証した。
論文 参考訳(メタデータ) (2024-06-01T00:39:55Z) - Provably Efficient Representation Learning with Tractable Planning in
Low-Rank POMDP [81.00800920928621]
部分的に観測可能なマルコフ決定過程(POMDP)における表現学習の研究
まず,不確実性(OFU)に直面した最大推定(MLE)と楽観性を組み合わせた復調性POMDPのアルゴリズムを提案する。
次に、このアルゴリズムをより広範な$gamma$-observable POMDPのクラスで機能させる方法を示す。
論文 参考訳(メタデータ) (2023-06-21T16:04:03Z) - Information-Theoretic Odometry Learning [83.36195426897768]
生体計測推定を目的とした学習動機付け手法のための統合情報理論フレームワークを提案する。
提案フレームワークは情報理論言語の性能評価と理解のためのエレガントなツールを提供する。
論文 参考訳(メタデータ) (2022-03-11T02:37:35Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
本稿では,CSUFS (Compactness Score) と呼ばれる高速な教師なし特徴選択手法を提案する。
提案アルゴリズムは既存のアルゴリズムよりも正確で効率的である。
論文 参考訳(メタデータ) (2022-01-31T13:01:37Z) - Improved Speech Emotion Recognition using Transfer Learning and
Spectrogram Augmentation [56.264157127549446]
音声感情認識(SER)は、人間とコンピュータの相互作用において重要な役割を果たす課題である。
SERの主な課題の1つは、データの不足である。
本稿では,スペクトログラム拡張と併用した移動学習戦略を提案する。
論文 参考訳(メタデータ) (2021-08-05T10:39:39Z) - Comparing interpretability and explainability for feature selection [0.6015898117103068]
各種ブラックボックスおよび解釈可能な機械学習手法における特徴選択法としての可変重要度の性能について検討する。
その結果,XGBoost はネイティブ変数重要度法や SHAP によらず,関連する特徴と無関係な特徴を明確に区別することができないことがわかった。
論文 参考訳(メタデータ) (2021-05-11T20:01:23Z) - Fantastic Features and Where to Find Them: Detecting Cognitive
Impairment with a Subsequence Classification Guided Approach [6.063165888023164]
本稿では、逐次機械学習モデルとドメイン知識を活用して、パフォーマンス向上に役立つ機能を予測する機能エンジニアリングの新しいアプローチについて説明する。
本手法により得られた特徴を用いた場合,CI分類精度が強いベースラインよりも2.3%向上することが実証された。
論文 参考訳(メタデータ) (2020-10-13T17:57:18Z) - Optimizing Speech Emotion Recognition using Manta-Ray Based Feature
Selection [1.4502611532302039]
既存の特徴抽出手法を用いて抽出した特徴の連結により,分類精度が向上することを示す。
また,音声感情認識タスクにおけるマンタレイ最適化の新たな応用を行い,その結果を得た。
論文 参考訳(メタデータ) (2020-09-18T16:09:34Z) - Feature Learning for Accelerometer based Gait Recognition [0.0]
オートエンコーダは、特徴学習能力に関して、差別的なエンドツーエンドモデルに非常に近い。
完全な畳み込みモデルは 訓練戦略に関係なく 優れた特徴表現を学べます
論文 参考訳(メタデータ) (2020-07-31T10:58:01Z) - iffDetector: Inference-aware Feature Filtering for Object Detection [70.8678270164057]
Inference-aware Feature Filtering (IFF)モジュールを導入し、現代の検出器と簡単に組み合わせることができる。
IFFは、畳み込み機能を強化するためにハイレベルなセマンティクスを活用することでクローズドループ最適化を行う。
IFFはCNNベースの物体検出器とプラグアンドプレイ方式で融合でき、計算コストのオーバーヘッドは無視できる。
論文 参考訳(メタデータ) (2020-06-23T02:57:29Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。