Nadine: An LLM-driven Intelligent Social Robot with Affective Capabilities and Human-like Memory
- URL: http://arxiv.org/abs/2405.20189v1
- Date: Thu, 30 May 2024 15:55:41 GMT
- Title: Nadine: An LLM-driven Intelligent Social Robot with Affective Capabilities and Human-like Memory
- Authors: Hangyeol Kang, Maher Ben Moussa, Nadia Magnenat-Thalmann,
- Abstract summary: We describe our approach to developing an intelligent and robust social robotic system for the Nadine platform.
We achieve this by integrating Large Language Models (LLMs) and skilfully leveraging the powerful reasoning and instruction-following capabilities of these types of models.
This approach is novel compared to the current state-of-the-art LLM-based agents which do not implement human-like long-term memory or sophisticated emotional appraisal.
- Score: 3.3906920519220054
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we describe our approach to developing an intelligent and robust social robotic system for the Nadine social robot platform. We achieve this by integrating Large Language Models (LLMs) and skilfully leveraging the powerful reasoning and instruction-following capabilities of these types of models to achieve advanced human-like affective and cognitive capabilities. This approach is novel compared to the current state-of-the-art LLM-based agents which do not implement human-like long-term memory or sophisticated emotional appraisal. The naturalness of social robots, consisting of multiple modules, highly depends on the performance and capabilities of each component of the system and the seamless integration of the components. We built a social robot system that enables generating appropriate behaviours through multimodal input processing, bringing episodic memories accordingly to the recognised user, and simulating the emotional states of the robot induced by the interaction with the human partner. In particular, we introduce an LLM-agent frame for social robots, SoR-ReAct, serving as a core component for the interaction module in our system. This design has brought forth the advancement of social robots and aims to increase the quality of human-robot interaction.
Related papers
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - Survey of Design Paradigms for Social Robots [10.618592615516901]
Social robots leverage multimodal communication, incorporating speech, facial expressions, and gestures to enhance user engagement and emotional support.
The understanding of design paradigms of social robots is obstructed by the complexity of the system and the necessity to tune it to a specific task.
This article provides a structured review of social robot design paradigms, categorizing them into cognitive architectures, role design models, linguistic models, communication flow, activity system models, and integrated design models.
arXiv Detail & Related papers (2024-07-30T05:22:31Z) - SOTOPIA: Interactive Evaluation for Social Intelligence in Language Agents [107.4138224020773]
We present SOTOPIA, an open-ended environment to simulate complex social interactions between artificial agents and humans.
In our environment, agents role-play and interact under a wide variety of scenarios; they coordinate, collaborate, exchange, and compete with each other to achieve complex social goals.
We find that GPT-4 achieves a significantly lower goal completion rate than humans and struggles to exhibit social commonsense reasoning and strategic communication skills.
arXiv Detail & Related papers (2023-10-18T02:27:01Z) - Incremental Learning of Humanoid Robot Behavior from Natural Interaction and Large Language Models [23.945922720555146]
We propose a system to achieve incremental learning of complex behavior from natural interaction.
We integrate the system in the robot cognitive architecture of the humanoid robot ARMAR-6.
arXiv Detail & Related papers (2023-09-08T13:29:05Z) - Developing Social Robots with Empathetic Non-Verbal Cues Using Large
Language Models [2.5489046505746704]
We design and label four types of empathetic non-verbal cues, abbreviated as SAFE: Speech, Action (gesture), Facial expression, and Emotion, in a social robot.
Preliminary results show distinct patterns in the robot's responses, such as a preference for calm and positive social emotions like 'joy' and 'lively', and frequent nodding gestures.
Our work lays the groundwork for future studies on human-robot interactions, emphasizing the essential role of both verbal and non-verbal cues in creating social and empathetic robots.
arXiv Detail & Related papers (2023-08-31T08:20:04Z) - CASPER: Cognitive Architecture for Social Perception and Engagement in
Robots [0.5918643136095765]
We present CASPER: a symbolic cognitive architecture that uses qualitative spatial reasoning to anticipate the pursued goal of another agent and to calculate the best collaborative behavior.
We have tested this architecture in a simulated kitchen environment and the results we have collected show that the robot is able to both recognize an ongoing goal and to properly collaborate towards its achievement.
arXiv Detail & Related papers (2022-09-01T10:15:03Z) - Data-driven emotional body language generation for social robotics [58.88028813371423]
In social robotics, endowing humanoid robots with the ability to generate bodily expressions of affect can improve human-robot interaction and collaboration.
We implement a deep learning data-driven framework that learns from a few hand-designed robotic bodily expressions.
The evaluation study found that the anthropomorphism and animacy of the generated expressions are not perceived differently from the hand-designed ones.
arXiv Detail & Related papers (2022-05-02T09:21:39Z) - A ROS Architecture for Personalised HRI with a Bartender Social Robot [61.843727637976045]
BRILLO project has the overall goal of creating an autonomous robotic bartender that can interact with customers while accomplishing its bartending tasks.
We present the developed three-layers ROS architecture integrating a perception layer managing the processing of different social signals, a decision-making layer for handling multi-party interactions, and an execution layer controlling the behaviour of a complex robot composed of arms and a face.
arXiv Detail & Related papers (2022-03-13T11:33:06Z) - Spatial Computing and Intuitive Interaction: Bringing Mixed Reality and
Robotics Together [68.44697646919515]
This paper presents several human-robot systems that utilize spatial computing to enable novel robot use cases.
The combination of spatial computing and egocentric sensing on mixed reality devices enables them to capture and understand human actions and translate these to actions with spatial meaning.
arXiv Detail & Related papers (2022-02-03T10:04:26Z) - A MultiModal Social Robot Toward Personalized Emotion Interaction [1.2183405753834562]
This study demonstrates a multimodal human-robot interaction (HRI) framework with reinforcement learning to enhance the robotic interaction policy.
The goal is to apply this framework in social scenarios that can let the robots generate a more natural and engaging HRI framework.
arXiv Detail & Related papers (2021-10-08T00:35:44Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
The ability to recognize human partners is an important social skill to build personalized and long-term human-robot interactions.
Deep learning networks have achieved state-of-the-art results and demonstrated to be suitable tools to address such a task.
One solution is to make robots learn from their first-hand sensory data with self-supervision.
arXiv Detail & Related papers (2021-03-16T13:50:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.