Cavity-Enhanced Emission and Absorption of Color Centers in a Diamond Membrane With Selectable Strain
- URL: http://arxiv.org/abs/2405.20205v1
- Date: Thu, 30 May 2024 16:08:13 GMT
- Title: Cavity-Enhanced Emission and Absorption of Color Centers in a Diamond Membrane With Selectable Strain
- Authors: Robert Berghaus, Selene Sachero, Gregor Bayer, Julia Heupel, Tobias Herzig, Florian Feuchtmayr, Jan Meijer, Cyril Popov, Alexander Kubanek,
- Abstract summary: Group IV color centers in diamond are among the most promising optically active spin systems.
We increase the ground-state splitting by up to an order of magnitude by induced strain in a single-crystal diamond membrane.
Together with the Purcell-enhanced twofold reduction in emitter lifetime below 1ns, this makes the system a promising spin-photon interface at moderate temperatures of 4K.
- Score: 34.006376530375064
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Group IV color centers in diamond are among the most promising optically active spin systems with strong optical transitions and long spin coherences. The ground-state splitting of the center is particularly important to suppress the interaction with coherence-limiting phonons, which improves the coherence properties and sets the upper limit for the operating temperature. Negatively charged silicon-vacancy centers have an ordinary ground-state splitting of only 48GHz, resulting in required temperatures below one Kelvin, which can only be achieved by dilution refrigerators. Here, we increase the ground-state splitting by up to an order of magnitude by induced strain in a single-crystal diamond membrane. Furthermore, we demonstrate cavity-assisted spectroscopy enabled by coupling the emitter ensemble with a selectable strain to the mode of a Fabry-Perot microcavity. Calculation of the absorption cross-section yields $\sigma_{ens} = $4.9*10^-11 cm^2. Together with the Purcell-enhanced twofold reduction in emitter lifetime below 1ns, this makes the system a promising spin-photon interface at moderate temperatures of 4K.
Related papers
- Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Cavity-assisted resonance fluorescence from a nitrogen-vacancy center in
diamond [0.0]
The nitrogen-vacancy center in diamond is an attractive resource for the generation of remote entangled states.
Here, we couple a nitrogen-vacancy center with a narrow extrinsically broadened linewidth, hosted in a micron-thin membrane, to the mode of an open optical microcavity.
The resulting Purcell factor of $sim$1.8 increases the fraction of zero-phonon line photons to above 44%, leading to coherent photon emission rates exceeding four times the state of the art.
arXiv Detail & Related papers (2024-03-07T15:57:57Z) - Cavity enhanced emission from a silicon T center [0.23917125666169287]
T centers exhibit long excited state lifetimes and a low Debye-Waller factor, making them dim emitters with low efficiency into the zero-phonon line.
Nanophotonic cavities can solve this problem by enhancing radiative emission into the zero-phonon line through the Purcell effect.
arXiv Detail & Related papers (2023-10-20T20:45:54Z) - Deterministic Creation of Strained Color Centers in Nanostructures via
High-Stress Thin Films [0.5706164516481158]
In this work we combine high-stress silicon nitride thin films with diamond nanostructures in order to reproducibly create strained silicon-vacancy color centers.
Based on modeling, this strain should be sufficient to allow for operation of a majority silicon-vacancy centers within a measured sample at elevated temperatures (1.5K) without any degradation of their spin properties.
arXiv Detail & Related papers (2023-09-13T23:50:34Z) - Transform-Limited Photon Emission From a Lead-Vacancy Center in Diamond
Above 10 K [2.616955424974018]
We report the coherent optical property of a single negatively-charged lead-vacancy center in diamond.
Photoluminescence excitation measurements reveal stable fluorescence with a linewidth of 39 MHz at 6 K, close to the transform-limit estimated from the lifetime measurement.
Due to the suppressed phonon absorption in the PbV center, we observe nearly transform-limited photon emission up to 16 K, demonstrating its high temperature compared to other color centers in diamond.
arXiv Detail & Related papers (2023-08-02T08:06:52Z) - Microwave-based quantum control and coherence protection of tin-vacancy
spin qubits in a strain-tuned diamond membrane heterostructure [54.501132156894435]
Tin-vacancy center (SnV) in diamond is a promising spin-photon interface with desirable optical and spin properties at 1.7 K.
We introduce a new platform that overcomes these challenges - SnV centers in uniformly strained thin diamond membranes.
The presence of crystal strain suppresses temperature dependent dephasing processes, leading to a considerable improvement of the coherence time up to 223 $mu$s at 4 K.
arXiv Detail & Related papers (2023-07-21T21:40:21Z) - Photophysics of Intrinsic Single-Photon Emitters in Silicon Nitride at
Low Temperatures [97.5153823429076]
A robust process for fabricating intrinsic single-photon emitters in silicon nitride has been recently established.
These emitters show promise for quantum applications due to room-temperature operation and monolithic integration with the technologically mature silicon nitride photonics platform.
arXiv Detail & Related papers (2023-01-25T19:53:56Z) - Tunable and Transferable Diamond Membranes for Integrated Quantum
Technologies [48.634695885442504]
nanoscale-thick uniform diamond membranes are synthesized via "smart-cut" and isotopically (12C) purified overgrowth.
Within 110 nm thick membranes, individual germanium-vacancy (GeV-) centers exhibit stable photoluminescence at 5.4 K and average optical transition linewidths as low as 125 MHz.
This platform enables the straightforward integration of diamond membranes that host coherent color centers into quantum technologies.
arXiv Detail & Related papers (2021-09-23T17:18:39Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z) - Purcell enhancement of a single silicon carbide color center with
coherent spin control [0.0]
We present the Purcell enhancement of a single neutral divacancy coupled to a photonic crystal cavity.
We demonstrate coherent control of the divacancy ground state spin inside the cavity nanostructure.
This spin-cavity system represents an advance towards scalable long-distance entanglement protocols.
arXiv Detail & Related papers (2020-02-28T19:54:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.