MOFA-Video: Controllable Image Animation via Generative Motion Field Adaptions in Frozen Image-to-Video Diffusion Model
- URL: http://arxiv.org/abs/2405.20222v3
- Date: Thu, 11 Jul 2024 16:26:03 GMT
- Title: MOFA-Video: Controllable Image Animation via Generative Motion Field Adaptions in Frozen Image-to-Video Diffusion Model
- Authors: Muyao Niu, Xiaodong Cun, Xintao Wang, Yong Zhang, Ying Shan, Yinqiang Zheng,
- Abstract summary: MOFA-Video is an advanced controllable image animation method that generates video from the given image using various additional controllable signals.
We design several domain-aware motion field adapters to control the generated motions in the video generation pipeline.
After training, the MOFA-Adapters in different domains can also work together for more controllable video generation.
- Score: 78.11258752076046
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present MOFA-Video, an advanced controllable image animation method that generates video from the given image using various additional controllable signals (such as human landmarks reference, manual trajectories, and another even provided video) or their combinations. This is different from previous methods which only can work on a specific motion domain or show weak control abilities with diffusion prior. To achieve our goal, we design several domain-aware motion field adapters (\ie, MOFA-Adapters) to control the generated motions in the video generation pipeline. For MOFA-Adapters, we consider the temporal motion consistency of the video and generate the dense motion flow from the given sparse control conditions first, and then, the multi-scale features of the given image are wrapped as a guided feature for stable video diffusion generation. We naively train two motion adapters for the manual trajectories and the human landmarks individually since they both contain sparse information about the control. After training, the MOFA-Adapters in different domains can also work together for more controllable video generation. Project Page: https://myniuuu.github.io/MOFA_Video/
Related papers
- AnimateAnything: Consistent and Controllable Animation for Video Generation [24.576022028967195]
We present a unified controllable video generation approach AnimateAnything.
It facilitates precise and consistent video manipulation across various conditions.
Experiments demonstrate that our method outperforms the state-of-the-art approaches.
arXiv Detail & Related papers (2024-11-16T16:36:49Z) - DreamVideo-2: Zero-Shot Subject-Driven Video Customization with Precise Motion Control [42.506988751934685]
We present DreamVideo-2, a zero-shot video customization framework capable of generating videos with a specific subject and motion trajectory.
Specifically, we introduce reference attention, which leverages the model's inherent capabilities for subject learning.
We devise a mask-guided motion module to achieve precise motion control by fully utilizing the robust motion signal of box masks.
arXiv Detail & Related papers (2024-10-17T17:52:57Z) - Direct-a-Video: Customized Video Generation with User-Directed Camera Movement and Object Motion [34.404342332033636]
We introduce Direct-a-Video, a system that allows users to independently specify motions for multiple objects as well as camera's pan and zoom movements.
For camera movement, we introduce new temporal cross-attention layers to interpret quantitative camera movement parameters.
Both components operate independently, allowing individual or combined control, and can generalize to open-domain scenarios.
arXiv Detail & Related papers (2024-02-05T16:30:57Z) - Motion-I2V: Consistent and Controllable Image-to-Video Generation with
Explicit Motion Modeling [62.19142543520805]
Motion-I2V is a framework for consistent and controllable image-to-video generation.
It factorizes I2V into two stages with explicit motion modeling.
Motion-I2V's second stage naturally supports zero-shot video-to-video translation.
arXiv Detail & Related papers (2024-01-29T09:06:43Z) - Moonshot: Towards Controllable Video Generation and Editing with
Multimodal Conditions [94.03133100056372]
Moonshot is a new video generation model that conditions simultaneously on multimodal inputs of image and text.
Model can be easily repurposed for a variety of generative applications, such as personalized video generation, image animation and video editing.
arXiv Detail & Related papers (2024-01-03T16:43:47Z) - VMC: Video Motion Customization using Temporal Attention Adaption for
Text-to-Video Diffusion Models [58.93124686141781]
Video Motion Customization (VMC) is a novel one-shot tuning approach crafted to adapt temporal attention layers within video diffusion models.
Our approach introduces a novel motion distillation objective using residual vectors between consecutive frames as a motion reference.
We validate our method against state-of-the-art video generative models across diverse real-world motions and contexts.
arXiv Detail & Related papers (2023-12-01T06:50:11Z) - MoVideo: Motion-Aware Video Generation with Diffusion Models [97.03352319694795]
We propose a novel motion-aware generation (MoVideo) framework that takes motion into consideration from two aspects: video depth and optical flow.
MoVideo achieves state-of-the-art results in both text-to-video and image-to-video generation, showing promising prompt consistency, frame consistency and visual quality.
arXiv Detail & Related papers (2023-11-19T13:36:03Z) - MotionDirector: Motion Customization of Text-to-Video Diffusion Models [24.282240656366714]
Motion Customization aims to adapt existing text-to-video diffusion models to generate videos with customized motion.
We propose MotionDirector, with a dual-path LoRAs architecture to decouple the learning of appearance and motion.
Our method also supports various downstream applications, such as the mixing of different videos with their appearance and motion respectively, and animating a single image with customized motions.
arXiv Detail & Related papers (2023-10-12T16:26:18Z) - LaMD: Latent Motion Diffusion for Video Generation [69.4111397077229]
latent motion diffusion (LaMD) framework consists of a motion-decomposed video autoencoder and a diffusion-based motion generator.
Results show that LaMD generates high-quality videos with a wide range of motions, from dynamics to highly controllable movements.
arXiv Detail & Related papers (2023-04-23T10:32:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.