Quarkonium Polarization in Medium from Open Quantum Systems and Chromomagnetic Correlators
- URL: http://arxiv.org/abs/2405.20280v2
- Date: Thu, 31 Oct 2024 04:42:50 GMT
- Title: Quarkonium Polarization in Medium from Open Quantum Systems and Chromomagnetic Correlators
- Authors: Di-Lun Yang, Xiaojun Yao,
- Abstract summary: We study the spin-dependent in-medium dynamics of quarkonia by using the potential nonrelativistic QCD (pNRQCD) and the open quantum system framework.
We derive the Boltzmann transport equation for quarkonia with polarization dependence in the quantum optical limit.
We also derive a Lindblad equation describing the in-medium transitions between spin-singlet and spin-triplet heavy quark-antiquark pairs.
- Score: 0.0
- License:
- Abstract: We study the spin-dependent in-medium dynamics of quarkonia by using the potential nonrelativistic QCD (pNRQCD) and the open quantum system framework. We consider the pNRQCD Lagrangian valid up to the order $\frac{r}{M^0}=r$ and $\frac{r^0}{M}=\frac{1}{M}$ in the double power counting. By considering the Markovian condition and applying the Wigner transformation upon the diagonal spin components of the quarkonium density matrix with the semiclassical expansion, we systematically derive the Boltzmann transport equation for quarkonia with polarization dependence in the quantum optical limit. Unlike the spin-independent collision terms governed by certain chromoelectric field correlators, new gauge invariant correlators of chromomagnetic fields determine the recombination and dissociation terms with polarization dependence at the order we are working. We also derive a Lindblad equation describing the in-medium transitions between spin-singlet and spin-triplet heavy quark-antiquark pairs in the quantum Brownian motion limit. The Lindblad equation is governed by new transport coefficients defined in terms of the chromomagnetic field correlators. Our formalism is generic and valid for both weakly coupled and strongly coupled quark gluon plasmas. It can be further applied to study spin alignment of vector quarkonia in heavy ion collisions.
Related papers
- Aharonov-Bohm Scattering From Knots [0.0]
The Aharonov-Bohm effect is perhaps the first example in which the the interplay between classical topology and quantum theory was explored.
Several attempts were made to generalize the Aharonov-Bohm effect by modifying the simple solenoidal current distribution.
arXiv Detail & Related papers (2024-05-29T10:13:53Z) - Antiferromagnetic Quantum Anomalous Hall Effect Modulated by Spin Flips and Flops [23.17305544412557]
We fabricate a device of 7-septuple-layer MnBi2Te4 covered with AlOx capping layer.
We uncover a cascade of quantum phase transitions that can be attributed to the influence of spin configurations on charge transport.
The versatile tunability of the quantum anomalous Hall effect in MnBi2Te4 paves the way for potential applications in topological antiferromagnetic spintronics.
arXiv Detail & Related papers (2024-05-14T15:08:07Z) - Ferrimagnetism of ultracold fermions in a multi-band Hubbard system [34.95884242542007]
We report on signatures of a ferrimagnetic state realized in a Lieb lattice at half-filling.
We demonstrate its robustness when increasing repulsive interactions from the non-interacting to the Heisenberg regime.
Our work paves the way towards exploring exotic phases in related multi-orbital models such as quantum spin liquids in kagome lattices and heavy fermion behavior in Kondo models.
arXiv Detail & Related papers (2024-04-26T17:33:26Z) - Simulating decoherence of coupled two spin qubits using generalized
cluster correlation expansion [2.7354851983299784]
We study the coherence of two coupled spin qubits in the presence of a bath of nuclear spins.
In our model, two electron spin qubits coupled with isotropic exchange or magnetic dipolar interactions interact with an environment of random nuclear spins.
arXiv Detail & Related papers (2024-02-28T21:46:32Z) - Unveiling the Quantum Toroidal Dipole in Nanosystems: Quantization,
Interaction Energy, and Measurement [44.99833362998488]
We investigate a quantum particle confined to a toroidal surface in the presence of a filiform current along the system's rotational axis.
Our analysis reveals that the interaction between the particle and the current induces a non-zero toroidal dipole in the particle's stationary states.
arXiv Detail & Related papers (2024-01-26T13:31:32Z) - Spin decoherence in VOPc@graphene nanoribbon complexes [5.691318972818067]
Carbon nanoribbon or nanographene qubit arrays can facilitate quantum-to-quantum transduction between light, charge, and spin.
We study spin decoherence due to coupling with a surrounding nuclear spin bath of an electronic molecular spin of a vanadyl phthalocyanine (VOPc) molecule integrated on an armchair-edged graphene nanoribbon (GNR)
We find that the decoherence time $T$ is anisotropic with respect to magnetic field orientation and determined only by nuclear spins on VOPc and GNR.
arXiv Detail & Related papers (2023-07-31T04:55:05Z) - Quantum to classical parton dynamics in QCD media [0.0]
We study the time evolution of the density matrix of a high energy quark propagating in a dense QCD medium.
One finds that only the color singlet component of the density matrix survives the quark's propagation through the medium.
arXiv Detail & Related papers (2023-05-17T18:00:00Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Dirac Equation for Photons: Origin of Polarisation [0.0]
We discuss propagation of coherent rays of photons in a graded-index optical fibre.
The energy spectrum is massive with the effective mass as a function of the confinement and orbital angular momentum.
Spin expectation value of a photon corresponds to the polarisation state in the Poincar'e sphere.
arXiv Detail & Related papers (2023-03-30T03:34:59Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.