Critical metrology of minimally accessible anisotropic spin chains
- URL: http://arxiv.org/abs/2405.20296v1
- Date: Thu, 30 May 2024 17:45:27 GMT
- Title: Critical metrology of minimally accessible anisotropic spin chains
- Authors: Marco Adani, Simone Cavazzoni, Berihu Teklu, Paolo Bordone, Matteo G. A. Paris,
- Abstract summary: We show how local and quasi-local measurements may be exploited to characterize global properties of the systems.
In particular, we evaluate the classical (magnetization) and quantum Fisher information of the relevant parameters for the density matrix of a single spin.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address quantum metrology in critical spin chains with anisotropy and Dzyaloshinskii-Moriya (DM) interaction, and show how local and quasi-local measurements may be exploited to characterize global properties of the systems. In particular, we evaluate the classical (magnetization) and quantum Fisher information of the relevant parameters for the density matrix of a single spin and that of a pair of spins ranging from nearest to sixth-nearest neighbors, to the limiting case of very distant spins. Our results allow us to elucidate the role of the different parameters and to individuate the optimal working regimes for the precise characterization of the system, also clarifying the effects of correlations on the estimation precision.
Related papers
- Quantum Information Resources in Spin-1 Heisenberg Dimer Systems [0.0]
We explore the quantum information resources within bipartite pure and mixed states of the quantum spin-1 Heisenberg dimer system.
We derive the system's density operator at thermal equilibrium and establish a mathematical framework for analyzing quantum correlation metrics.
arXiv Detail & Related papers (2024-09-12T14:36:21Z) - Hallmarks of Optimization Trajectories in Neural Networks: Directional Exploration and Redundancy [75.15685966213832]
We analyze the rich directional structure of optimization trajectories represented by their pointwise parameters.
We show that training only scalar batchnorm parameters some while into training matches the performance of training the entire network.
arXiv Detail & Related papers (2024-03-12T07:32:47Z) - Characterization of partially accessible anisotropic spin chains in the
presence of anti-symmetric exchange [0.0]
We address quantum characterization of anisotropic spin chains in the presence of antisymmetric exchange.
We investigate whether the Hamiltonian parameters of the chain may be estimated with precision approaching the ultimate limit imposed by quantum mechanics.
arXiv Detail & Related papers (2024-01-25T19:26:35Z) - On the optimality of the radical-pair quantum compass [0.0]
We investigate the limits of inferring geomagnetic field directions from radical-pair spin dynamics.
We probe the quantum Fisher information and associated Cram'er--Rao bound in spin models of realistic complexity.
Overall, the comparison provides insight into processes honed by nature to realise optimality.
arXiv Detail & Related papers (2024-01-05T18:01:47Z) - Combining critical and quantum metrology [0.0]
We introduce an approach combining two methodologies into a unified protocol applicable to closed and driven-dissipative systems.
We provide analytical expressions for the quantum and classical Fisher information in such a setup, elucidating as well a straightforward measurement approach.
We showcase these results by focusing on the squeezing Hamiltonian, which characterizes the thermodynamic limit of Dicke and Lipkin-Meshkov-Glick Hamiltonians.
arXiv Detail & Related papers (2023-11-28T04:21:39Z) - Quantum metrology with critical driven-dissipative collective spin
system [0.0]
We propose a quantum probe consisting of coherently driven ensemble of $N$ spin-1/2 particles under the effect of squeezed, collective spin decay.
Thanks to the dissipative phase transition the sensitivity of the parameter estimation can be significantly enhanced.
arXiv Detail & Related papers (2023-02-10T12:33:39Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Gate-based spin readout of hole quantum dots with site-dependent
$g-$factors [101.23523361398418]
We experimentally investigate a hole double quantum dot in silicon by carrying out spin readout with gate-based reflectometry.
We show that characteristic features in the reflected phase signal arising from magneto-spectroscopy convey information on site-dependent $g-$factors in the two dots.
arXiv Detail & Related papers (2022-06-27T09:07:20Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.