Improving the Training of Rectified Flows
- URL: http://arxiv.org/abs/2405.20320v2
- Date: Tue, 08 Oct 2024 21:40:13 GMT
- Title: Improving the Training of Rectified Flows
- Authors: Sangyun Lee, Zinan Lin, Giulia Fanti,
- Abstract summary: Diffusion models have shown great promise for image and video generation, but sampling from state-of-the-art models requires expensive numerical integration of a generative ODE.
One approach for tackling this problem is rectified flows, which iteratively learn smooth ODE paths that are less susceptible to truncation error.
We propose improved techniques for training rectified flows, allowing them to compete with emphknowledge distillation methods even in the low NFE setting.
Our improved rectified flow outperforms the state-of-the-art distillation methods such as consistency distillation and progressive distillation in both one-step and two
- Score: 14.652876697052156
- License:
- Abstract: Diffusion models have shown great promise for image and video generation, but sampling from state-of-the-art models requires expensive numerical integration of a generative ODE. One approach for tackling this problem is rectified flows, which iteratively learn smooth ODE paths that are less susceptible to truncation error. However, rectified flows still require a relatively large number of function evaluations (NFEs). In this work, we propose improved techniques for training rectified flows, allowing them to compete with \emph{knowledge distillation} methods even in the low NFE setting. Our main insight is that under realistic settings, a single iteration of the Reflow algorithm for training rectified flows is sufficient to learn nearly straight trajectories; hence, the current practice of using multiple Reflow iterations is unnecessary. We thus propose techniques to improve one-round training of rectified flows, including a U-shaped timestep distribution and LPIPS-Huber premetric. With these techniques, we improve the FID of the previous 2-rectified flow by up to 75\% in the 1 NFE setting on CIFAR-10. On ImageNet 64$\times$64, our improved rectified flow outperforms the state-of-the-art distillation methods such as consistency distillation and progressive distillation in both one-step and two-step settings and rivals the performance of improved consistency training (iCT) in FID. Code is available at https://github.com/sangyun884/rfpp.
Related papers
- Constant Acceleration Flow [13.49794130678208]
Rectified flow and reflow procedures have advanced fast generation by progressively straightening ordinary differential equation (ODE) flows.
They operate under the assumption that image and noise pairs, known as couplings, can be approximated by straight trajectories with constant velocity.
We introduce Constant Acceleration Flow (CAF), a novel framework based on a simple constant acceleration equation.
arXiv Detail & Related papers (2024-11-01T02:43:56Z) - Rectified Diffusion: Straightness Is Not Your Need in Rectified Flow [65.51671121528858]
Diffusion models have greatly improved visual generation but are hindered by slow generation speed due to the computationally intensive nature of solving generative ODEs.
Rectified flow, a widely recognized solution, improves generation speed by straightening the ODE path.
We propose Rectified Diffusion, which generalizes the design space and application scope of rectification to encompass the broader category of diffusion models.
arXiv Detail & Related papers (2024-10-09T17:43:38Z) - Consistency Flow Matching: Defining Straight Flows with Velocity Consistency [97.28511135503176]
We introduce Consistency Flow Matching (Consistency-FM), a novel FM method that explicitly enforces self-consistency in the velocity field.
Preliminary experiments demonstrate that our Consistency-FM significantly improves training efficiency by converging 4.4x faster than consistency models.
arXiv Detail & Related papers (2024-07-02T16:15:37Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
We show that Guided Flows significantly improves the sample quality in conditional image generation and zero-shot text synthesis-to-speech.
Notably, we are first to apply flow models for plan generation in the offline reinforcement learning setting ax speedup in compared to diffusion models.
arXiv Detail & Related papers (2023-11-22T15:07:59Z) - Training-free Linear Image Inverses via Flows [17.291903204982326]
We propose a training-free method for solving linear inverse problems by using pretrained flow models.
Our approach requires no problem-specific tuning across an extensive suite of noisy linear inverse problems on high-dimensional datasets.
arXiv Detail & Related papers (2023-09-25T22:13:16Z) - Balance is Essence: Accelerating Sparse Training via Adaptive Gradient
Correction [29.61757744974324]
Deep neural networks require significant memory and computation costs.
Sparse training is one of the most common techniques to reduce these costs.
In this work, we aim to overcome this problem and achieve space-time co-efficiency.
arXiv Detail & Related papers (2023-01-09T18:50:03Z) - Deep Equilibrium Optical Flow Estimation [80.80992684796566]
Recent state-of-the-art (SOTA) optical flow models use finite-step recurrent update operations to emulate traditional algorithms.
These RNNs impose large computation and memory overheads, and are not directly trained to model such stable estimation.
We propose deep equilibrium (DEQ) flow estimators, an approach that directly solves for the flow as the infinite-level fixed point of an implicit layer.
arXiv Detail & Related papers (2022-04-18T17:53:44Z) - Online Convolutional Re-parameterization [51.97831675242173]
We present online convolutional re- parameterization (OREPA), a two-stage pipeline, aiming to reduce the huge training overhead by squeezing the complex training-time block into a single convolution.
Compared with the state-of-the-art re-param models, OREPA is able to save the training-time memory cost by about 70% and accelerate the training speed by around 2x.
We also conduct experiments on object detection and semantic segmentation and show consistent improvements on the downstream tasks.
arXiv Detail & Related papers (2022-04-02T09:50:19Z) - GMFlow: Learning Optical Flow via Global Matching [124.57850500778277]
We propose a GMFlow framework for learning optical flow estimation.
It consists of three main components: a customized Transformer for feature enhancement, a correlation and softmax layer for global feature matching, and a self-attention layer for flow propagation.
Our new framework outperforms 32-iteration RAFT's performance on the challenging Sintel benchmark.
arXiv Detail & Related papers (2021-11-26T18:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.