Constant Acceleration Flow
- URL: http://arxiv.org/abs/2411.00322v1
- Date: Fri, 01 Nov 2024 02:43:56 GMT
- Title: Constant Acceleration Flow
- Authors: Dogyun Park, Sojin Lee, Sihyeon Kim, Taehoon Lee, Youngjoon Hong, Hyunwoo J. Kim,
- Abstract summary: Rectified flow and reflow procedures have advanced fast generation by progressively straightening ordinary differential equation (ODE) flows.
They operate under the assumption that image and noise pairs, known as couplings, can be approximated by straight trajectories with constant velocity.
We introduce Constant Acceleration Flow (CAF), a novel framework based on a simple constant acceleration equation.
- Score: 13.49794130678208
- License:
- Abstract: Rectified flow and reflow procedures have significantly advanced fast generation by progressively straightening ordinary differential equation (ODE) flows. They operate under the assumption that image and noise pairs, known as couplings, can be approximated by straight trajectories with constant velocity. However, we observe that modeling with constant velocity and using reflow procedures have limitations in accurately learning straight trajectories between pairs, resulting in suboptimal performance in few-step generation. To address these limitations, we introduce Constant Acceleration Flow (CAF), a novel framework based on a simple constant acceleration equation. CAF introduces acceleration as an additional learnable variable, allowing for more expressive and accurate estimation of the ODE flow. Moreover, we propose two techniques to further improve estimation accuracy: initial velocity conditioning for the acceleration model and a reflow process for the initial velocity. Our comprehensive studies on toy datasets, CIFAR-10, and ImageNet 64x64 demonstrate that CAF outperforms state-of-the-art baselines for one-step generation. We also show that CAF dramatically improves few-step coupling preservation and inversion over Rectified flow. Code is available at \href{https://github.com/mlvlab/CAF}{https://github.com/mlvlab/CAF}.
Related papers
- Rectified Diffusion: Straightness Is Not Your Need in Rectified Flow [65.51671121528858]
Diffusion models have greatly improved visual generation but are hindered by slow generation speed due to the computationally intensive nature of solving generative ODEs.
Rectified flow, a widely recognized solution, improves generation speed by straightening the ODE path.
We propose Rectified Diffusion, which generalizes the design space and application scope of rectification to encompass the broader category of diffusion models.
arXiv Detail & Related papers (2024-10-09T17:43:38Z) - Consistency Flow Matching: Defining Straight Flows with Velocity Consistency [97.28511135503176]
We introduce Consistency Flow Matching (Consistency-FM), a novel FM method that explicitly enforces self-consistency in the velocity field.
Preliminary experiments demonstrate that our Consistency-FM significantly improves training efficiency by converging 4.4x faster than consistency models.
arXiv Detail & Related papers (2024-07-02T16:15:37Z) - FlowIE: Efficient Image Enhancement via Rectified Flow [71.6345505427213]
FlowIE is a flow-based framework that estimates straight-line paths from an elementary distribution to high-quality images.
Our contributions are rigorously validated through comprehensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2024-06-01T17:29:29Z) - Improving the Training of Rectified Flows [14.652876697052156]
Diffusion models have shown great promise for image and video generation, but sampling from state-of-the-art models requires expensive numerical integration of a generative ODE.
One approach for tackling this problem is rectified flows, which iteratively learn smooth ODE paths that are less susceptible to truncation error.
We propose improved techniques for training rectified flows, allowing them to compete with emphknowledge distillation methods even in the low NFE setting.
Our improved rectified flow outperforms the state-of-the-art distillation methods such as consistency distillation and progressive distillation in both one-step and two
arXiv Detail & Related papers (2024-05-30T17:56:04Z) - StreamFlow: Streamlined Multi-Frame Optical Flow Estimation for Video
Sequences [31.210626775505407]
Occlusions between consecutive frames have long posed a significant challenge in optical flow estimation.
We present a Streamlined In-batch Multi-frame (SIM) pipeline tailored to video input, attaining a similar level of time efficiency to two-frame networks.
StreamFlow not only excels in terms of performance on challenging KITTI and Sintel datasets, with particular improvement in occluded areas.
arXiv Detail & Related papers (2023-11-28T07:53:51Z) - AccFlow: Backward Accumulation for Long-Range Optical Flow [70.4251045372285]
This paper proposes a novel recurrent framework called AccFlow for long-range optical flow estimation.
We demonstrate the superiority of backward accumulation over conventional forward accumulation.
Experiments validate the effectiveness of AccFlow in handling long-range optical flow estimation.
arXiv Detail & Related papers (2023-08-25T01:51:26Z) - Deep Equilibrium Optical Flow Estimation [80.80992684796566]
Recent state-of-the-art (SOTA) optical flow models use finite-step recurrent update operations to emulate traditional algorithms.
These RNNs impose large computation and memory overheads, and are not directly trained to model such stable estimation.
We propose deep equilibrium (DEQ) flow estimators, an approach that directly solves for the flow as the infinite-level fixed point of an implicit layer.
arXiv Detail & Related papers (2022-04-18T17:53:44Z) - GMFlow: Learning Optical Flow via Global Matching [124.57850500778277]
We propose a GMFlow framework for learning optical flow estimation.
It consists of three main components: a customized Transformer for feature enhancement, a correlation and softmax layer for global feature matching, and a self-attention layer for flow propagation.
Our new framework outperforms 32-iteration RAFT's performance on the challenging Sintel benchmark.
arXiv Detail & Related papers (2021-11-26T18:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.