Rectified Diffusion: Straightness Is Not Your Need in Rectified Flow
- URL: http://arxiv.org/abs/2410.07303v2
- Date: Fri, 11 Oct 2024 16:17:53 GMT
- Title: Rectified Diffusion: Straightness Is Not Your Need in Rectified Flow
- Authors: Fu-Yun Wang, Ling Yang, Zhaoyang Huang, Mengdi Wang, Hongsheng Li,
- Abstract summary: Diffusion models have greatly improved visual generation but are hindered by slow generation speed due to the computationally intensive nature of solving generative ODEs.
Rectified flow, a widely recognized solution, improves generation speed by straightening the ODE path.
We propose Rectified Diffusion, which generalizes the design space and application scope of rectification to encompass the broader category of diffusion models.
- Score: 65.51671121528858
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have greatly improved visual generation but are hindered by slow generation speed due to the computationally intensive nature of solving generative ODEs. Rectified flow, a widely recognized solution, improves generation speed by straightening the ODE path. Its key components include: 1) using the diffusion form of flow-matching, 2) employing $\boldsymbol v$-prediction, and 3) performing rectification (a.k.a. reflow). In this paper, we argue that the success of rectification primarily lies in using a pretrained diffusion model to obtain matched pairs of noise and samples, followed by retraining with these matched noise-sample pairs. Based on this, components 1) and 2) are unnecessary. Furthermore, we highlight that straightness is not an essential training target for rectification; rather, it is a specific case of flow-matching models. The more critical training target is to achieve a first-order approximate ODE path, which is inherently curved for models like DDPM and Sub-VP. Building on this insight, we propose Rectified Diffusion, which generalizes the design space and application scope of rectification to encompass the broader category of diffusion models, rather than being restricted to flow-matching models. We validate our method on Stable Diffusion v1-5 and Stable Diffusion XL. Our method not only greatly simplifies the training procedure of rectified flow-based previous works (e.g., InstaFlow) but also achieves superior performance with even lower training cost. Our code is available at https://github.com/G-U-N/Rectified-Diffusion.
Related papers
- Constant Acceleration Flow [13.49794130678208]
Rectified flow and reflow procedures have advanced fast generation by progressively straightening ordinary differential equation (ODE) flows.
They operate under the assumption that image and noise pairs, known as couplings, can be approximated by straight trajectories with constant velocity.
We introduce Constant Acceleration Flow (CAF), a novel framework based on a simple constant acceleration equation.
arXiv Detail & Related papers (2024-11-01T02:43:56Z) - Straightness of Rectified Flow: A Theoretical Insight into Wasserstein Convergence [54.580605276017096]
Rectified Flow (RF) aims to learn straight flow trajectories from noise to data using a sequence of convex optimization problems.
RF theoretically straightens the trajectory through successive rectifications, reducing the number of evaluations function (NFEs) while sampling.
We provide the first theoretical analysis of the Wasserstein distance between the sampling distribution of RF and the target distribution.
arXiv Detail & Related papers (2024-10-19T02:36:11Z) - Truncated Consistency Models [57.50243901368328]
Training consistency models requires learning to map all intermediate points along PF ODE trajectories to their corresponding endpoints.
We empirically find that this training paradigm limits the one-step generation performance of consistency models.
We propose a new parameterization of the consistency function and a two-stage training procedure that prevents the truncated-time training from collapsing to a trivial solution.
arXiv Detail & Related papers (2024-10-18T22:38:08Z) - Derivative-Free Guidance in Continuous and Discrete Diffusion Models with Soft Value-Based Decoding [84.3224556294803]
Diffusion models excel at capturing the natural design spaces of images, molecules, DNA, RNA, and protein sequences.
We aim to optimize downstream reward functions while preserving the naturalness of these design spaces.
Our algorithm integrates soft value functions, which looks ahead to how intermediate noisy states lead to high rewards in the future.
arXiv Detail & Related papers (2024-08-15T16:47:59Z) - Improving the Training of Rectified Flows [14.652876697052156]
Diffusion models have shown great promise for image and video generation, but sampling from state-of-the-art models requires expensive numerical integration of a generative ODE.
One approach for tackling this problem is rectified flows, which iteratively learn smooth ODE paths that are less susceptible to truncation error.
We propose improved techniques for training rectified flows, allowing them to compete with emphknowledge distillation methods even in the low NFE setting.
Our improved rectified flow outperforms the state-of-the-art distillation methods such as consistency distillation and progressive distillation in both one-step and two
arXiv Detail & Related papers (2024-05-30T17:56:04Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
Guidance serves as a key concept in diffusion models, yet its effectiveness is often limited by the need for extra data annotation or pretraining.
We propose a framework to extract guidance from, and specifically for, diffusion models.
arXiv Detail & Related papers (2023-12-14T11:19:11Z) - Guided Flows for Generative Modeling and Decision Making [55.42634941614435]
We show that Guided Flows significantly improves the sample quality in conditional image generation and zero-shot text synthesis-to-speech.
Notably, we are first to apply flow models for plan generation in the offline reinforcement learning setting ax speedup in compared to diffusion models.
arXiv Detail & Related papers (2023-11-22T15:07:59Z) - Generative Modeling with Flow-Guided Density Ratio Learning [12.192867460641835]
Flow-Guided Density Ratio Learning (FDRL) is a simple and scalable approach to generative modeling.
We show that FDRL can generate images of dimensions as high as $128times128$, as well as outperform existing gradient flow baselines on quantitative benchmarks.
arXiv Detail & Related papers (2023-03-07T07:55:52Z) - Flow Straight and Fast: Learning to Generate and Transfer Data with
Rectified Flow [32.459587479351846]
We present rectified flow, a surprisingly simple approach to learning (neural) ordinary differential equation (ODE) models.
We show that rectified flow performs superbly on image generation, image-to-image translation, and domain adaptation.
arXiv Detail & Related papers (2022-09-07T08:59:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.