論文の概要: VividDream: Generating 3D Scene with Ambient Dynamics
- arxiv url: http://arxiv.org/abs/2405.20334v1
- Date: Thu, 30 May 2024 17:59:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 12:50:16.759197
- Title: VividDream: Generating 3D Scene with Ambient Dynamics
- Title(参考訳): VividDream: アンビエントダイナミクスによる3Dシーンの生成
- Authors: Yao-Chih Lee, Yi-Ting Chen, Andrew Wang, Ting-Hsuan Liao, Brandon Y. Feng, Jia-Bin Huang,
- Abstract要約: 一つの入力画像やテキストプロンプトから周囲のダイナミックスを持つ探索可能な4Dシーンを生成する方法であるVividDreamを紹介する。
VividDreamは、さまざまな実画像とテキストプロンプトに基づいて、魅力的な4D体験を提供する。
- 参考スコア(独自算出の注目度): 13.189732244489225
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce VividDream, a method for generating explorable 4D scenes with ambient dynamics from a single input image or text prompt. VividDream first expands an input image into a static 3D point cloud through iterative inpainting and geometry merging. An ensemble of animated videos is then generated using video diffusion models with quality refinement techniques and conditioned on renderings of the static 3D scene from the sampled camera trajectories. We then optimize a canonical 4D scene representation using an animated video ensemble, with per-video motion embeddings and visibility masks to mitigate inconsistencies. The resulting 4D scene enables free-view exploration of a 3D scene with plausible ambient scene dynamics. Experiments demonstrate that VividDream can provide human viewers with compelling 4D experiences generated based on diverse real images and text prompts.
- Abstract(参考訳): 一つの入力画像やテキストプロンプトから周囲のダイナミックスを持つ探索可能な4Dシーンを生成する方法であるVividDreamを紹介する。
VividDreamは、最初に入力画像を静的な3Dポイントクラウドに拡大し、反復的な塗装と幾何学的マージを行う。
アニメーションビデオのアンサンブルは、画質向上技術を備えたビデオ拡散モデルを用いて生成され、サンプリングされたカメラ軌道からの静的な3Dシーンのレンダリングに条件付けされる。
次に、アニメーションビデオアンサンブルを用いて標準4Dシーン表現を最適化し、動画ごとのモーション埋め込みと視認性マスクを用いて不整合を緩和する。
結果として生じる4Dシーンは、可塑性周囲のダイナミックスを持つ3Dシーンのフリービュー探索を可能にする。
VividDreamは、さまざまな実画像とテキストプロンプトに基づいて、魅力的な4D体験を提供する。
関連論文リスト
- DimensionX: Create Any 3D and 4D Scenes from a Single Image with Controllable Video Diffusion [22.11178016375823]
DimensionXは、ビデオ拡散を伴う単一の画像から3Dと4Dのシーンを生成するように設計されたフレームワークである。
提案手法は,3次元シーンの空間構造と4次元シーンの時間的進化の両方が,映像フレームのシーケンスを通して効果的に表現できるという知見から始まった。
論文 参考訳(メタデータ) (2024-11-07T18:07:31Z) - 4-LEGS: 4D Language Embedded Gaussian Splatting [12.699978393733309]
3次元ガウシアンティングに基づく4次元表現に時間的特徴を持ち上げる方法を示す。
これにより、ユーザはテキストプロンプトからビデオ内のイベントを時間的にローカライズすることができる。
我々は,人や動物が様々な行動を行う様子を公開3Dビデオデータセットで実演する。
論文 参考訳(メタデータ) (2024-10-14T17:00:53Z) - Comp4D: LLM-Guided Compositional 4D Scene Generation [65.5810466788355]
合成 4D 生成のための新しいフレームワーク Comp4D について述べる。
シーン全体の特異な4D表現を生成する従来の方法とは異なり、Comp4Dはシーン内の各4Dオブジェクトを革新的に別々に構築する。
提案手法は, 予め定義された軌道で導かれる合成スコア蒸留技術を用いている。
論文 参考訳(メタデータ) (2024-03-25T17:55:52Z) - 4DGen: Grounded 4D Content Generation with Spatial-temporal Consistency [118.15258850780417]
この4DGenは、4Dコンテンツ作成のための新しいフレームワークである。
静的な3Dアセットとモノクロビデオシーケンスを4Dコンテンツ構築のキーコンポーネントとして同定する。
我々のパイプラインは条件付き4D生成を容易にし、ユーザーは幾何学(3Dアセット)と運動(眼球ビデオ)を指定できる。
論文 参考訳(メタデータ) (2023-12-28T18:53:39Z) - 4D-fy: Text-to-4D Generation Using Hybrid Score Distillation Sampling [91.99172731031206]
現在のテキストから4Dの手法は、シーンの外観の質、立体構造、動きの3方向のトレードオフに直面している。
本稿では,複数の事前学習拡散モデルからの監視信号をブレンドする交互最適化手法であるハイブリッドスコア蒸留法を提案する。
論文 参考訳(メタデータ) (2023-11-29T18:58:05Z) - Make-It-4D: Synthesizing a Consistent Long-Term Dynamic Scene Video from
a Single Image [59.18564636990079]
本研究では,1枚の画像のみから長期ダイナミック映像を合成する問題について検討する。
既存の方法は、一貫性のない永遠の視点を幻覚させるか、長いカメラの軌跡に苦しむかのいずれかである。
一つの画像から一貫した長期動画像を生成する新しい方法であるMake-It-4Dを提案する。
論文 参考訳(メタデータ) (2023-08-20T12:53:50Z) - SceneDreamer: Unbounded 3D Scene Generation from 2D Image Collections [49.802462165826554]
SceneDreamerは,非有界な3次元シーンの無条件生成モデルである。
フレームワークは,3Dアノテーションを使わずに,Wild 2Dイメージコレクションのみから学習する。
論文 参考訳(メタデータ) (2023-02-02T18:59:16Z) - Text-To-4D Dynamic Scene Generation [111.89517759596345]
テキスト記述から3次元動的シーンを生成するMAV3D(Make-A-Video3D)を提案する。
提案手法では, シーンの外観, 密度, 動きの整合性に最適化された4次元動的ニューラルラジアンス場(NeRF)を用いる。
提供されるテキストから出力されるダイナミックビデオは、任意のカメラの位置と角度から見ることができ、任意の3D環境に合成することができる。
論文 参考訳(メタデータ) (2023-01-26T18:14:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。