論文の概要: DimensionX: Create Any 3D and 4D Scenes from a Single Image with Controllable Video Diffusion
- arxiv url: http://arxiv.org/abs/2411.04928v1
- Date: Thu, 07 Nov 2024 18:07:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-08 19:39:26.459711
- Title: DimensionX: Create Any 3D and 4D Scenes from a Single Image with Controllable Video Diffusion
- Title(参考訳): DimensionX:コントロール可能なビデオ拡散で1枚の画像から3Dと4Dのシーンを作る
- Authors: Wenqiang Sun, Shuo Chen, Fangfu Liu, Zilong Chen, Yueqi Duan, Jun Zhang, Yikai Wang,
- Abstract要約: DimensionXは、ビデオ拡散を伴う単一の画像から3Dと4Dのシーンを生成するように設計されたフレームワークである。
提案手法は,3次元シーンの空間構造と4次元シーンの時間的進化の両方が,映像フレームのシーケンスを通して効果的に表現できるという知見から始まった。
- 参考スコア(独自算出の注目度): 22.11178016375823
- License:
- Abstract: In this paper, we introduce \textbf{DimensionX}, a framework designed to generate photorealistic 3D and 4D scenes from just a single image with video diffusion. Our approach begins with the insight that both the spatial structure of a 3D scene and the temporal evolution of a 4D scene can be effectively represented through sequences of video frames. While recent video diffusion models have shown remarkable success in producing vivid visuals, they face limitations in directly recovering 3D/4D scenes due to limited spatial and temporal controllability during generation. To overcome this, we propose ST-Director, which decouples spatial and temporal factors in video diffusion by learning dimension-aware LoRAs from dimension-variant data. This controllable video diffusion approach enables precise manipulation of spatial structure and temporal dynamics, allowing us to reconstruct both 3D and 4D representations from sequential frames with the combination of spatial and temporal dimensions. Additionally, to bridge the gap between generated videos and real-world scenes, we introduce a trajectory-aware mechanism for 3D generation and an identity-preserving denoising strategy for 4D generation. Extensive experiments on various real-world and synthetic datasets demonstrate that DimensionX achieves superior results in controllable video generation, as well as in 3D and 4D scene generation, compared with previous methods.
- Abstract(参考訳): 本稿では,映像拡散を伴う単一の画像から,フォトリアリスティックな3Dシーンと4Dシーンを生成するためのフレームワークである \textbf{DimensionX} を紹介する。
提案手法は,3次元シーンの空間構造と4次元シーンの時間的進化の両方が,映像フレームのシーケンスを通して効果的に表現できるという知見から始まった。
近年の映像拡散モデルでは鮮やかな視覚を再現することに成功したが、生成時の空間的・時間的制御性に制限があるため、直接3D/4Dシーンを復元する際の限界に直面している。
そこで本研究では,ビデオ拡散における空間的要因と時間的要因を次元変動データから学習することで分離するST-Directorを提案する。
この制御可能なビデオ拡散方式により、空間構造と時間力学の精密な操作が可能となり、空間次元と時間次元の組み合わせにより、逐次フレームから3次元と4次元の両方の表現を再構成することができる。
さらに,生成した映像と実世界のシーンのギャップを埋めるために,3次元生成のための軌跡認識機構と4次元生成のためのアイデンティティ保存型デノーミング戦略を導入する。
様々な実世界および合成データセットに対する大規模な実験により、DimensionXは従来の方法と比較して3Dおよび4Dシーン生成と同様に、制御可能なビデオ生成において優れた結果が得られることが示された。
関連論文リスト
- Tex4D: Zero-shot 4D Scene Texturing with Video Diffusion Models [54.35214051961381]
3Dメッシュはコンピュータビジョンとグラフィックスにおいて、アニメーションの効率と映画、ゲーム、AR、VRにおける最小限のメモリ使用のために広く利用されている。
しかし、メッシュのための時間的一貫性と現実的なテクスチャを作成することは、プロのアーティストにとって労働集約的だ。
本稿では、メッシュ配列から固有の幾何学とビデオ拡散モデルを統合することで、一貫したテクスチャを生成する3Dテクスチャシーケンスを提案する。
論文 参考訳(メタデータ) (2024-10-14T17:59:59Z) - 4-LEGS: 4D Language Embedded Gaussian Splatting [12.699978393733309]
3次元ガウシアンティングに基づく4次元表現に時間的特徴を持ち上げる方法を示す。
これにより、ユーザはテキストプロンプトからビデオ内のイベントを時間的にローカライズすることができる。
我々は,人や動物が様々な行動を行う様子を公開3Dビデオデータセットで実演する。
論文 参考訳(メタデータ) (2024-10-14T17:00:53Z) - LT3SD: Latent Trees for 3D Scene Diffusion [71.91446143124648]
本稿では,大規模3次元シーン生成のための新しい潜時拡散モデルLT3SDを提案する。
大規模かつ高品質な非条件3Dシーン生成におけるLT3SDの有効性とメリットを実証する。
論文 参考訳(メタデータ) (2024-09-12T16:55:51Z) - 4Real: Towards Photorealistic 4D Scene Generation via Video Diffusion Models [53.89348957053395]
テキストから4Dシーン生成のための新しいパイプラインを提案する。
提案手法は,ビデオ生成モデルを用いて参照ビデオを生成することから始まる。
次に、凍結時間ビデオを用いて、ビデオの標準的な3D表現を学習する。
論文 参考訳(メタデータ) (2024-06-11T17:19:26Z) - Diffusion4D: Fast Spatial-temporal Consistent 4D Generation via Video Diffusion Models [116.31344506738816]
高速でスケーラブルな4Dコンテンツ生成のための新しいフレームワーク textbfDiffusion4D を提案する。
ダイナミックな3Dアセットの軌道ビューを合成できる4D対応ビデオ拡散モデルを開発した。
提案手法は, 生成効率と4次元幾何整合性の観点から, 従来の最先端技術を超えている。
論文 参考訳(メタデータ) (2024-05-26T17:47:34Z) - Comp4D: LLM-Guided Compositional 4D Scene Generation [65.5810466788355]
合成 4D 生成のための新しいフレームワーク Comp4D について述べる。
シーン全体の特異な4D表現を生成する従来の方法とは異なり、Comp4Dはシーン内の各4Dオブジェクトを革新的に別々に構築する。
提案手法は, 予め定義された軌道で導かれる合成スコア蒸留技術を用いている。
論文 参考訳(メタデータ) (2024-03-25T17:55:52Z) - 4DGen: Grounded 4D Content Generation with Spatial-temporal Consistency [118.15258850780417]
この4DGenは、4Dコンテンツ作成のための新しいフレームワークである。
静的な3Dアセットとモノクロビデオシーケンスを4Dコンテンツ構築のキーコンポーネントとして同定する。
我々のパイプラインは条件付き4D生成を容易にし、ユーザーは幾何学(3Dアセット)と運動(眼球ビデオ)を指定できる。
論文 参考訳(メタデータ) (2023-12-28T18:53:39Z) - Real-time Photorealistic Dynamic Scene Representation and Rendering with
4D Gaussian Splatting [8.078460597825142]
2次元画像から動的3Dシーンを再構成し、時間とともに多様なビューを生成することは、シーンの複雑さと時間的ダイナミクスのために困難である。
本研究では、4次元プリミティブの集合を明示的な幾何学と外観モデルを用いて最適化することにより、動的シーンの基本的な時間的レンダリング量を近似することを提案する。
我々のモデルは概念的に単純であり、異方性楕円によってパラメータ化され、空間と時間で任意に回転する4次元ガウスのパラメータと、4次元球面調和係数で表されるビュー依存および時間進化の外観から構成される。
論文 参考訳(メタデータ) (2023-10-16T17:57:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。