Linear Function Approximation as a Computationally Efficient Method to Solve Classical Reinforcement Learning Challenges
- URL: http://arxiv.org/abs/2405.20350v1
- Date: Mon, 27 May 2024 22:51:58 GMT
- Title: Linear Function Approximation as a Computationally Efficient Method to Solve Classical Reinforcement Learning Challenges
- Authors: Hari Srikanth,
- Abstract summary: We present an implementation of Natural Actor Critic algorithms with actor updates through Natural Policy Gradient methods.
We observe that our algorithm trains much faster than complex neural network architectures, and obtains an equivalent or greater result.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Network based approximations of the Value function make up the core of leading Policy Based methods such as Trust Regional Policy Optimization (TRPO) and Proximal Policy Optimization (PPO). While this adds significant value when dealing with very complex environments, we note that in sufficiently low State and action space environments, a computationally expensive Neural Network architecture offers marginal improvement over simpler Value approximation methods. We present an implementation of Natural Actor Critic algorithms with actor updates through Natural Policy Gradient methods. This paper proposes that Natural Policy Gradient (NPG) methods with Linear Function Approximation as a paradigm for value approximation may surpass the performance and speed of Neural Network based models such as TRPO and PPO within these environments. Over Reinforcement Learning benchmarks Cart Pole and Acrobot, we observe that our algorithm trains much faster than complex neural network architectures, and obtains an equivalent or greater result. This allows us to recommend the use of NPG methods with Linear Function Approximation over TRPO and PPO for both traditional and sparse reward low dimensional problems.
Related papers
- Local Optimization Achieves Global Optimality in Multi-Agent
Reinforcement Learning [139.53668999720605]
We present a multi-agent PPO algorithm in which the local policy of each agent is updated similarly to vanilla PPO.
We prove that with standard regularity conditions on the Markov game and problem-dependent quantities, our algorithm converges to the globally optimal policy at a sublinear rate.
arXiv Detail & Related papers (2023-05-08T16:20:03Z) - Anchor-Changing Regularized Natural Policy Gradient for Multi-Objective
Reinforcement Learning [17.916366827429034]
We study policy optimization for Markov decision processes (MDPs) with multiple reward value functions.
We propose an Anchor-changing Regularized Natural Policy Gradient framework, which can incorporate ideas from well-performing first-order methods.
arXiv Detail & Related papers (2022-06-10T21:09:44Z) - Neural Network Compatible Off-Policy Natural Actor-Critic Algorithm [16.115903198836694]
Learning optimal behavior from existing data is one of the most important problems in Reinforcement Learning (RL)
This is known as "off-policy control" in RL where an agent's objective is to compute an optimal policy based on the data obtained from the given policy (known as the behavior policy)
This work proposes an off-policy natural actor-critic algorithm that utilizes state-action distribution correction for handling the off-policy behavior and the natural policy gradient for sample efficiency.
arXiv Detail & Related papers (2021-10-19T14:36:45Z) - Learning Sampling Policy for Faster Derivative Free Optimization [100.27518340593284]
We propose a new reinforcement learning based ZO algorithm (ZO-RL) with learning the sampling policy for generating the perturbations in ZO optimization instead of using random sampling.
Our results show that our ZO-RL algorithm can effectively reduce the variances of ZO gradient by learning a sampling policy, and converge faster than existing ZO algorithms in different scenarios.
arXiv Detail & Related papers (2021-04-09T14:50:59Z) - Provably Correct Optimization and Exploration with Non-linear Policies [65.60853260886516]
ENIAC is an actor-critic method that allows non-linear function approximation in the critic.
We show that under certain assumptions, the learner finds a near-optimal policy in $O(poly(d))$ exploration rounds.
We empirically evaluate this adaptation and show that it outperforms priors inspired by linear methods.
arXiv Detail & Related papers (2021-03-22T03:16:33Z) - Near Optimal Policy Optimization via REPS [33.992374484681704]
emphrelative entropy policy search (REPS) has demonstrated successful policy learning on a number of simulated and real-world robotic domains.
There exist no guarantees on REPS's performance when using gradient-based solvers.
We introduce a technique that uses emphgenerative access to the underlying decision process to compute parameter updates that maintain favorable convergence to the optimal regularized policy.
arXiv Detail & Related papers (2021-03-17T16:22:59Z) - Average-Reward Off-Policy Policy Evaluation with Function Approximation [66.67075551933438]
We consider off-policy policy evaluation with function approximation in average-reward MDPs.
bootstrapping is necessary and, along with off-policy learning and FA, results in the deadly triad.
We propose two novel algorithms, reproducing the celebrated success of Gradient TD algorithms in the average-reward setting.
arXiv Detail & Related papers (2021-01-08T00:43:04Z) - Queueing Network Controls via Deep Reinforcement Learning [0.0]
We develop a Proximal policy optimization algorithm for queueing networks.
The algorithm consistently generates control policies that outperform state-of-arts in literature.
A key to the successes of our PPO algorithm is the use of three variance reduction techniques in estimating the relative value function.
arXiv Detail & Related papers (2020-07-31T01:02:57Z) - Fast Global Convergence of Natural Policy Gradient Methods with Entropy
Regularization [44.24881971917951]
Natural policy gradient (NPG) methods are among the most widely used policy optimization algorithms.
We develop convergence guarantees for entropy-regularized NPG methods under softmax parameterization.
Our results accommodate a wide range of learning rates, and shed light upon the role of entropy regularization in enabling fast convergence.
arXiv Detail & Related papers (2020-07-13T17:58:41Z) - Guided Uncertainty-Aware Policy Optimization: Combining Learning and
Model-Based Strategies for Sample-Efficient Policy Learning [75.56839075060819]
Traditional robotic approaches rely on an accurate model of the environment, a detailed description of how to perform the task, and a robust perception system to keep track of the current state.
reinforcement learning approaches can operate directly from raw sensory inputs with only a reward signal to describe the task, but are extremely sample-inefficient and brittle.
In this work, we combine the strengths of model-based methods with the flexibility of learning-based methods to obtain a general method that is able to overcome inaccuracies in the robotics perception/actuation pipeline.
arXiv Detail & Related papers (2020-05-21T19:47:05Z) - Neural Proximal/Trust Region Policy Optimization Attains Globally
Optimal Policy [119.12515258771302]
We show that a variant of PPOO equipped with over-parametrization converges to globally optimal networks.
The key to our analysis is the iterate of infinite gradient under a notion of one-dimensional monotonicity, where the gradient and are instant by networks.
arXiv Detail & Related papers (2019-06-25T03:20:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.