Medication Recommendation via Dual Molecular Modalities and Multi-Substructure Enhancement
- URL: http://arxiv.org/abs/2405.20358v2
- Date: Tue, 9 Jul 2024 03:13:12 GMT
- Title: Medication Recommendation via Dual Molecular Modalities and Multi-Substructure Enhancement
- Authors: Shi Mu, Shunpan Liang, Xiang Li,
- Abstract summary: Existing works based on molecular knowledge neglect the 3D geometric structure of molecules.
We propose BiMoRec, which introduces 3D molecular structures to obtain atomic 3D coordinates and edge indices.
We use deep learning networks to construct a pretraining method that acquires 2D and 3D molecular structure representations and substructure representations.
- Score: 5.027701313370709
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medication recommendation combines patient medical history with biomedical knowledge to assist doctors in determining medication combinations more accurately and safely. Existing works based on molecular knowledge neglect the 3D geometric structure of molecules and fail to learn the high-dimensional information of medications, leading to structural confusion. Additionally, it does not extract key substructures from a single patient visit, resulting in the failure to identify medication molecules suitable for the current patient visit. To address the above limitations, we propose a bimodal molecular recommendation framework named BiMoRec, which introduces 3D molecular structures to obtain atomic 3D coordinates and edge indices, overcoming the inherent lack of high-dimensional molecular information in 2D molecular structures. To retain the fast training and prediction efficiency of the recommendation system, we use bimodal graph contrastive pretraining to maximize the mutual information between the two molecular modalities, achieving the fusion of 2D and 3D molecular graphs and re-evaluating substructures at the visit level. Specifically, we use deep learning networks to construct a pretraining method that acquires 2D and 3D molecular structure representations and substructure representations, and obtain mutual information through contrastive learning. We then generate fused molecular representations using the trained GNN module and re-determine the relevance of substructure representations in combination with the patient's clinical history. Finally, we generate the final medication combination based on the extracted substructure sequences. Our implementation on the MIMIC-III and MIMIC-IV datasets demonstrates that our method achieves state-of-the-art performance. Compared to the second-best baseline, our model improves accuracy by 2.07%, with DDI at the same level as the baseline.
Related papers
- Knowledge-aware contrastive heterogeneous molecular graph learning [77.94721384862699]
We propose a paradigm shift by encoding molecular graphs into Heterogeneous Molecular Graph Learning (KCHML)
KCHML conceptualizes molecules through three distinct graph views-molecular, elemental, and pharmacological-enhanced by heterogeneous molecular graphs and a dual message-passing mechanism.
This design offers a comprehensive representation for property prediction, as well as for downstream tasks such as drug-drug interaction (DDI) prediction.
arXiv Detail & Related papers (2025-02-17T11:53:58Z) - UniIF: Unified Molecule Inverse Folding [67.60267592514381]
We propose a unified model UniIF for inverse folding of all molecules.
Our proposed method surpasses state-of-the-art methods on all tasks.
arXiv Detail & Related papers (2024-05-29T10:26:16Z) - Molecule Joint Auto-Encoding: Trajectory Pretraining with 2D and 3D
Diffusion [19.151643496588022]
We propose a pretraining method for molecule joint auto-encoding (MoleculeJAE)
MoleculeJAE can learn both the 2D bond (topology) and 3D conformation (geometry) information.
Empirically, MoleculeJAE proves its effectiveness by reaching state-of-the-art performance on 15 out of 20 tasks.
arXiv Detail & Related papers (2023-12-06T12:58:37Z) - Learning Over Molecular Conformer Ensembles: Datasets and Benchmarks [44.934084652800976]
We introduce the first MoleculAR Conformer Ensemble Learning benchmark to thoroughly evaluate the potential of learning on conformer ensembles.
Our findings reveal that direct learning from an conformer space can improve performance on a variety of tasks and models.
arXiv Detail & Related papers (2023-09-29T20:06:46Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule Representations [68.32093648671496]
We introduce GODE, which accounts for the dual-level structure inherent in molecules.
Molecules possess an intrinsic graph structure and simultaneously function as nodes within a broader molecular knowledge graph.
By pre-training two GNNs on different graph structures, GODE effectively fuses molecular structures with their corresponding knowledge graph substructures.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - MUDiff: Unified Diffusion for Complete Molecule Generation [104.7021929437504]
We present a new model for generating a comprehensive representation of molecules, including atom features, 2D discrete molecule structures, and 3D continuous molecule coordinates.
We propose a novel graph transformer architecture to denoise the diffusion process.
Our model is a promising approach for designing stable and diverse molecules and can be applied to a wide range of tasks in molecular modeling.
arXiv Detail & Related papers (2023-04-28T04:25:57Z) - An Equivariant Generative Framework for Molecular Graph-Structure
Co-Design [54.92529253182004]
We present MolCode, a machine learning-based generative framework for underlineMolecular graph-structure underlineCo-design.
In MolCode, 3D geometric information empowers the molecular 2D graph generation, which in turn helps guide the prediction of molecular 3D structure.
Our investigation reveals that the 2D topology and 3D geometry contain intrinsically complementary information in molecule design.
arXiv Detail & Related papers (2023-04-12T13:34:22Z) - Multi-view deep learning based molecule design and structural
optimization accelerates the SARS-CoV-2 inhibitor discovery [10.974317147338303]
We propose MEDICO, a Multi-viEw Deep generative model for molecule generation, structural optimization, and SARS-CoV-2 Inhibitor disCOvery.
We show that our MEDICO significantly outperforms the state-of-the-art methods in generating valid, unique, and novel molecules under benchmarking comparisons.
Case study results on targeted molecule generation for the SARS-CoV-2 main protease (Mpro) show that by integrating molecule docking into our model as chemical priori, we successfully generate new small molecules with desired drug-like properties for the Mpro, potentially accelerating the de novo design of Covid
arXiv Detail & Related papers (2022-12-03T08:21:13Z) - Improving Molecular Pretraining with Complementary Featurizations [20.86159731100242]
Molecular pretraining is a paradigm to solve a variety of tasks in computational chemistry and drug discovery.
We show that different featurization techniques convey chemical information differently.
We propose a simple and effective MOlecular pretraining framework with COmplementary featurizations (MOCO)
arXiv Detail & Related papers (2022-09-29T21:11:09Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.