Fast leave-one-cluster-out cross-validation using clustered Network Information Criterion (NICc)
- URL: http://arxiv.org/abs/2405.20400v2
- Date: Wed, 09 Oct 2024 18:24:39 GMT
- Title: Fast leave-one-cluster-out cross-validation using clustered Network Information Criterion (NICc)
- Authors: Jiaxing Qiu, Douglas E. Lake, Pavel Chernyavskiy, Teague R. Henry,
- Abstract summary: It is crucial to use cluster-based validation to assess model generalizability on unseen clusters.
This paper introduces a clustered estimator of the Network Information Criterion (NICc) to approximate leave-one-cluster-out deviance.
- Score: 0.32141666878560626
- License:
- Abstract: For prediction models developed on clustered data that do not account for cluster heterogeneity in model parameterization, it is crucial to use cluster-based validation to assess model generalizability on unseen clusters. This paper introduces a clustered estimator of the Network Information Criterion (NICc) to approximate leave-one-cluster-out deviance for standard prediction models with twice differentiable log-likelihood functions. The NICc serves as a fast alternative to cluster-based cross-validation. Stone (1977) proved that the Akaike Information Criterion (AIC) is asymptotically equivalent to leave-one-observation-out cross-validation for true parametric models with independent and identically distributed observations. Ripley (1996) noted that the Network Information Criterion (NIC), derived from Stone's proof, is a better approximation when the model is misspecified. For clustered data, we derived NICc by substituting the Fisher information matrix in the NIC with a clustering-adjusted estimator. The NICc imposes a greater penalty when the data exhibits stronger clustering, thereby allowing the NICc to better prevent over-parameterization. In a simulation study and an empirical example, we used standard regression to develop prediction models for clustered data with Gaussian or binomial responses. Compared to the commonly used AIC and BIC for standard regression, NICc provides a much more accurate approximation to leave-one-cluster-out deviance and results in more accurate model size and variable selection, as determined by cluster-based cross-validation, especially when the data exhibit strong clustering.
Related papers
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - ClusterQ: Semantic Feature Distribution Alignment for Data-Free
Quantization [111.12063632743013]
We propose a new and effective data-free quantization method termed ClusterQ.
To obtain high inter-class separability of semantic features, we cluster and align the feature distribution statistics.
We also incorporate the intra-class variance to solve class-wise mode collapse.
arXiv Detail & Related papers (2022-04-30T06:58:56Z) - Adversarially-regularized mixed effects deep learning (ARMED) models for
improved interpretability, performance, and generalization on clustered data [0.974672460306765]
Mixed effects models separate cluster-invariant, population-level fixed effects from cluster-specific random effects.
We propose a general-purpose framework for building Adversarially-Regularized Mixed Effects Deep learning (ARMED) models through 3 non-intrusive additions to existing networks.
We apply this framework to dense feedforward neural networks (DFNNs), convolutional neural networks, and autoencoders on 4 applications including simulations, dementia prognosis and diagnosis, and cell microscopy.
arXiv Detail & Related papers (2022-02-23T20:58:22Z) - Personalized Federated Learning via Convex Clustering [72.15857783681658]
We propose a family of algorithms for personalized federated learning with locally convex user costs.
The proposed framework is based on a generalization of convex clustering in which the differences between different users' models are penalized.
arXiv Detail & Related papers (2022-02-01T19:25:31Z) - Mind Your Clever Neighbours: Unsupervised Person Re-identification via
Adaptive Clustering Relationship Modeling [19.532602887109668]
Unsupervised person re-identification (Re-ID) attracts increasing attention due to its potential to resolve the scalability problem of supervised Re-ID models.
Most existing unsupervised methods adopt an iterative clustering mechanism, where the network was trained based on pseudo labels generated by unsupervised clustering.
To generate high-quality pseudo-labels and mitigate the impact of clustering errors, we propose a novel clustering relationship modeling framework for unsupervised person Re-ID.
arXiv Detail & Related papers (2021-12-03T10:55:07Z) - Neural Mixture Models with Expectation-Maximization for End-to-end Deep
Clustering [0.8543753708890495]
In this paper, we realize mixture model-based clustering with a neural network.
We train the network end-to-end via batch-wise EM iterations where the forward pass acts as the E-step and the backward pass acts as the M-step.
Our trained networks outperform single-stage deep clustering methods that still depend on k-means.
arXiv Detail & Related papers (2021-07-06T08:00:58Z) - Topology-based Clusterwise Regression for User Segmentation and Demand
Forecasting [63.78344280962136]
Using a public and a novel proprietary data set of commercial data, this research shows that the proposed system enables analysts to both cluster their user base and plan demand at a granular level.
This work seeks to introduce TDA-based clustering of time series and clusterwise regression with matrix factorization methods as viable tools for the practitioner.
arXiv Detail & Related papers (2020-09-08T12:10:10Z) - Decorrelated Clustering with Data Selection Bias [55.91842043124102]
We propose a novel Decorrelation regularized K-Means algorithm (DCKM) for clustering with data selection bias.
Our DCKM algorithm achieves significant performance gains, indicating the necessity of removing unexpected feature correlations induced by selection bias.
arXiv Detail & Related papers (2020-06-29T08:55:50Z) - Robust M-Estimation Based Bayesian Cluster Enumeration for Real
Elliptically Symmetric Distributions [5.137336092866906]
Robustly determining optimal number of clusters in a data set is an essential factor in a wide range of applications.
This article generalizes so that it can be used with any arbitrary Really Symmetric (RES) distributed mixture model.
We derive a robust criterion for data sets with finite sample size, and also provide an approximation to reduce the computational cost at large sample sizes.
arXiv Detail & Related papers (2020-05-04T11:44:49Z) - Blocked Clusterwise Regression [0.0]
We generalize previous approaches to discrete unobserved heterogeneity by allowing each unit to have multiple latent variables.
We contribute to the theory of clustering with an over-specified number of clusters and derive new convergence rates for this setting.
arXiv Detail & Related papers (2020-01-29T23:29:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.