Performance of NPG in Countable State-Space Average-Cost RL
- URL: http://arxiv.org/abs/2405.20467v1
- Date: Thu, 30 May 2024 20:29:52 GMT
- Title: Performance of NPG in Countable State-Space Average-Cost RL
- Authors: Yashaswini Murthy, Isaac Grosof, Siva Theja Maguluri, R. Srikant,
- Abstract summary: We consider policy optimization methods in reinforcement learning settings where the state space is arbitrarily large.
The motivation arises from control problems in communication networks, matching markets, and other queueing systems.
- Score: 12.949520455740092
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider policy optimization methods in reinforcement learning settings where the state space is arbitrarily large, or even countably infinite. The motivation arises from control problems in communication networks, matching markets, and other queueing systems. We consider Natural Policy Gradient (NPG), which is a popular algorithm for finite state spaces. Under reasonable assumptions, we derive a performance bound for NPG that is independent of the size of the state space, provided the error in policy evaluation is within a factor of the true value function. We obtain this result by establishing new policy-independent bounds on the solution to Poisson's equation, i.e., the relative value function, and by combining these bounds with previously known connections between MDPs and learning from experts.
Related papers
- Learning Deterministic Policies with Policy Gradients in Constrained Markov Decision Processes [59.27926064817273]
We introduce an exploration-agnostic algorithm, called C-PG, which enjoys global last-iterate convergence guarantees under domination assumptions.<n>We empirically validate both the action-based (C-PGAE) and parameter-based (C-PGPE) variants of C-PG on constrained control tasks.
arXiv Detail & Related papers (2025-06-06T10:29:05Z) - Ordering-based Conditions for Global Convergence of Policy Gradient Methods [73.6366483406033]
We prove that, for finite-arm bandits with linear function approximation, the global convergence of policy gradient (PG) methods depends on inter-related properties between the policy update and the representation.
Overall, these observations call into question approximation error as an appropriate quantity for characterizing the global convergence of PG methods under linear function approximation.
arXiv Detail & Related papers (2025-04-02T21:06:28Z) - Deterministic Policy Gradient Primal-Dual Methods for Continuous-Space Constrained MDPs [82.34567890576423]
We develop a deterministic policy gradient primal-dual method to find an optimal deterministic policy with non-asymptotic convergence.
We prove that the primal-dual iterates of D-PGPD converge at a sub-linear rate to an optimal regularized primal-dual pair.
To the best of our knowledge, this appears to be the first work that proposes a deterministic policy search method for continuous-space constrained MDPs.
arXiv Detail & Related papers (2024-08-19T14:11:04Z) - Last-Iterate Global Convergence of Policy Gradients for Constrained Reinforcement Learning [62.81324245896717]
We introduce an exploration-agnostic algorithm, called C-PG, which exhibits global last-ite convergence guarantees under (weak) gradient domination assumptions.
We numerically validate our algorithms on constrained control problems, and compare them with state-of-the-art baselines.
arXiv Detail & Related papers (2024-07-15T14:54:57Z) - Convergence for Natural Policy Gradient on Infinite-State Queueing MDPs [14.14642081068942]
A wide variety of queueing systems can be naturally modeled as infinite-state Markov Decision Processes (MDPs)
In the reinforcement learning (RL) context, a variety of algorithms have been developed to learn and optimize these MDPs.
At the heart of many popular policy-gradient based learning algorithms, such as natural actor-critic, TRPO, and PPO, lies the Natural Policy Gradient (NPG) policy optimization algorithm.
arXiv Detail & Related papers (2024-02-07T21:43:57Z) - Last-Iterate Convergent Policy Gradient Primal-Dual Methods for
Constrained MDPs [107.28031292946774]
We study the problem of computing an optimal policy of an infinite-horizon discounted Markov decision process (constrained MDP)
We develop two single-time-scale policy-based primal-dual algorithms with non-asymptotic convergence of their policy iterates to an optimal constrained policy.
To the best of our knowledge, this work appears to be the first non-asymptotic policy last-iterate convergence result for single-time-scale algorithms in constrained MDPs.
arXiv Detail & Related papers (2023-06-20T17:27:31Z) - Trust-Region-Free Policy Optimization for Stochastic Policies [60.52463923712565]
We show that the trust region constraint over policies can be safely substituted by a trust-region-free constraint without compromising the underlying monotonic improvement guarantee.
We call the resulting algorithm Trust-REgion-Free Policy Optimization (TREFree) explicit as it is free of any trust region constraints.
arXiv Detail & Related papers (2023-02-15T23:10:06Z) - Convergence and sample complexity of natural policy gradient primal-dual methods for constrained MDPs [21.347689976296834]
We employ the natural policy gradient method to solve the discounted optimal optimal rate problem.
We also provide convergence and finite-sample guarantees for two sample-based NPG-PD algorithms.
arXiv Detail & Related papers (2022-06-06T04:28:04Z) - Robust and Adaptive Temporal-Difference Learning Using An Ensemble of
Gaussian Processes [70.80716221080118]
The paper takes a generative perspective on policy evaluation via temporal-difference (TD) learning.
The OS-GPTD approach is developed to estimate the value function for a given policy by observing a sequence of state-reward pairs.
To alleviate the limited expressiveness associated with a single fixed kernel, a weighted ensemble (E) of GP priors is employed to yield an alternative scheme.
arXiv Detail & Related papers (2021-12-01T23:15:09Z) - Near Optimality of Finite Memory Feedback Policies in Partially Observed
Markov Decision Processes [0.0]
We study a planning problem for POMDPs where the system dynamics and measurement channel model is assumed to be known.
We find optimal policies for the approximate belief model under mild non-linear filter stability conditions.
We also establish a rate of convergence result which relates the finite window memory size and the approximation error bound.
arXiv Detail & Related papers (2020-10-15T00:37:51Z) - Queueing Network Controls via Deep Reinforcement Learning [0.0]
We develop a Proximal policy optimization algorithm for queueing networks.
The algorithm consistently generates control policies that outperform state-of-arts in literature.
A key to the successes of our PPO algorithm is the use of three variance reduction techniques in estimating the relative value function.
arXiv Detail & Related papers (2020-07-31T01:02:57Z) - Fast Global Convergence of Natural Policy Gradient Methods with Entropy
Regularization [44.24881971917951]
Natural policy gradient (NPG) methods are among the most widely used policy optimization algorithms.
We develop convergence guarantees for entropy-regularized NPG methods under softmax parameterization.
Our results accommodate a wide range of learning rates, and shed light upon the role of entropy regularization in enabling fast convergence.
arXiv Detail & Related papers (2020-07-13T17:58:41Z) - Implicit Distributional Reinforcement Learning [61.166030238490634]
implicit distributional actor-critic (IDAC) built on two deep generator networks (DGNs)
Semi-implicit actor (SIA) powered by a flexible policy distribution.
We observe IDAC outperforms state-of-the-art algorithms on representative OpenAI Gym environments.
arXiv Detail & Related papers (2020-07-13T02:52:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.