An Automatic Question Usability Evaluation Toolkit
- URL: http://arxiv.org/abs/2405.20529v1
- Date: Thu, 30 May 2024 23:04:53 GMT
- Title: An Automatic Question Usability Evaluation Toolkit
- Authors: Steven Moore, Eamon Costello, Huy A. Nguyen, John Stamper,
- Abstract summary: evaluating multiple-choice questions (MCQs) involves either labor intensive human assessments or automated methods that prioritize readability.
We introduce SAQUET, an open-source tool that leverages the Item-Writing Flaws (IWF) rubric for a comprehensive and automated quality evaluation of MCQs.
With an accuracy rate of over 94%, our findings emphasize the limitations of existing evaluation methods and showcase potential in improving the quality of educational assessments.
- Score: 1.2499537119440245
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Evaluating multiple-choice questions (MCQs) involves either labor intensive human assessments or automated methods that prioritize readability, often overlooking deeper question design flaws. To address this issue, we introduce the Scalable Automatic Question Usability Evaluation Toolkit (SAQUET), an open-source tool that leverages the Item-Writing Flaws (IWF) rubric for a comprehensive and automated quality evaluation of MCQs. By harnessing the latest in large language models such as GPT-4, advanced word embeddings, and Transformers designed to analyze textual complexity, SAQUET effectively pinpoints and assesses a wide array of flaws in MCQs. We first demonstrate the discrepancy between commonly used automated evaluation metrics and the human assessment of MCQ quality. Then we evaluate SAQUET on a diverse dataset of MCQs across the five domains of Chemistry, Statistics, Computer Science, Humanities, and Healthcare, showing how it effectively distinguishes between flawed and flawless questions, providing a level of analysis beyond what is achievable with traditional metrics. With an accuracy rate of over 94% in detecting the presence of flaws identified by human evaluators, our findings emphasize the limitations of existing evaluation methods and showcase potential in improving the quality of educational assessments.
Related papers
- AGENT-CQ: Automatic Generation and Evaluation of Clarifying Questions for Conversational Search with LLMs [53.6200736559742]
AGENT-CQ consists of two stages: a generation stage and an evaluation stage.
CrowdLLM simulates human crowdsourcing judgments to assess generated questions and answers.
Experiments on the ClariQ dataset demonstrate CrowdLLM's effectiveness in evaluating question and answer quality.
arXiv Detail & Related papers (2024-10-25T17:06:27Z) - MCQG-SRefine: Multiple Choice Question Generation and Evaluation with Iterative Self-Critique, Correction, and Comparison Feedback [6.681247642186701]
We propose a framework for converting medical cases into high-quality USMLE-style questions.
MCQG-SRefine integrates expert-driven prompt engineering with iterative self-critique and self-correction feedback.
We introduce an LLM-as-Judge-based automatic metric to replace the complex and costly expert evaluation process.
arXiv Detail & Related papers (2024-10-17T03:38:29Z) - MIRROR: A Novel Approach for the Automated Evaluation of Open-Ended Question Generation [0.4857223913212445]
We propose a novel system, MIRROR, to automate the evaluation process for questions generated by automated question generation systems.
We observed that the scores of human evaluation metrics, namely relevance, appropriateness, novelty, complexity, and grammaticality, improved when using the feedback-based approach called MIRROR.
arXiv Detail & Related papers (2024-10-16T12:24:42Z) - A Step Towards Mixture of Grader: Statistical Analysis of Existing Automatic Evaluation Metrics [6.571049277167304]
We study the statistics of the existing evaluation metrics for a better understanding of their limitations.
As a potential solution, we discuss how a Mixture Of Grader could potentially improve the auto QA evaluator quality.
arXiv Detail & Related papers (2024-10-13T22:10:42Z) - QGEval: Benchmarking Multi-dimensional Evaluation for Question Generation [9.001613702628253]
Human evaluation is widely used in the field of question generation (QG) and serves as the gold standard for automatic metrics.
There is a lack of unified human evaluation criteria, which hampers consistent evaluations of both QG models and automatic metrics.
We propose QGEval, a multi-dimensional Evaluation benchmark for Question Generation, which evaluates both generated questions and existing automatic metrics across 7 dimensions.
arXiv Detail & Related papers (2024-06-09T09:51:55Z) - SQUARE: Automatic Question Answering Evaluation using Multiple Positive
and Negative References [73.67707138779245]
We propose a new evaluation metric: SQuArE (Sentence-level QUestion AnsweRing Evaluation)
We evaluate SQuArE on both sentence-level extractive (Answer Selection) and generative (GenQA) QA systems.
arXiv Detail & Related papers (2023-09-21T16:51:30Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
We discuss a paradigm shift from static evaluation methods to adaptive testing.
This involves estimating the characteristics and value of each test item in the benchmark and dynamically adjusting items in real-time.
We analyze the current approaches, advantages, and underlying reasons for adopting psychometrics in AI evaluation.
arXiv Detail & Related papers (2023-06-18T09:54:33Z) - Towards Robust Text-Prompted Semantic Criterion for In-the-Wild Video
Quality Assessment [54.31355080688127]
We introduce a text-prompted Semantic Affinity Quality Index (SAQI) and its localized version (SAQI-Local) using Contrastive Language-Image Pre-training (CLIP)
BVQI-Local demonstrates unprecedented performance, surpassing existing zero-shot indices by at least 24% on all datasets.
We conduct comprehensive analyses to investigate different quality concerns of distinct indices, demonstrating the effectiveness and rationality of our design.
arXiv Detail & Related papers (2023-04-28T08:06:05Z) - Pushing the Right Buttons: Adversarial Evaluation of Quality Estimation [25.325624543852086]
We propose a general methodology for adversarial testing of Quality Estimation for Machine Translation (MT) systems.
We show that despite a high correlation with human judgements achieved by the recent SOTA, certain types of meaning errors are still problematic for QE to detect.
Second, we show that on average, the ability of a given model to discriminate between meaning-preserving and meaning-altering perturbations is predictive of its overall performance.
arXiv Detail & Related papers (2021-09-22T17:32:18Z) - GO FIGURE: A Meta Evaluation of Factuality in Summarization [131.1087461486504]
We introduce GO FIGURE, a meta-evaluation framework for evaluating factuality evaluation metrics.
Our benchmark analysis on ten factuality metrics reveals that our framework provides a robust and efficient evaluation.
It also reveals that while QA metrics generally improve over standard metrics that measure factuality across domains, performance is highly dependent on the way in which questions are generated.
arXiv Detail & Related papers (2020-10-24T08:30:20Z) - Tangled up in BLEU: Reevaluating the Evaluation of Automatic Machine
Translation Evaluation Metrics [64.88815792555451]
We show that current methods for judging metrics are highly sensitive to the translations used for assessment.
We develop a method for thresholding performance improvement under an automatic metric against human judgements.
arXiv Detail & Related papers (2020-06-11T09:12:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.