Mitigating the Impact of Labeling Errors on Training via Rockafellian Relaxation
- URL: http://arxiv.org/abs/2405.20531v1
- Date: Thu, 30 May 2024 23:13:01 GMT
- Title: Mitigating the Impact of Labeling Errors on Training via Rockafellian Relaxation
- Authors: Louis L. Chen, Bobbie Chern, Eric Eckstrand, Amogh Mahapatra, Johannes O. Royset,
- Abstract summary: We propose and study the implementation of Rockafellian Relaxation (RR) for neural network training.
RR can enhance standard neural network methods to achieve robust performance across classification tasks.
We find that RR can mitigate the effects of dataset corruption due to both (heavy) labeling error and/or adversarial perturbation.
- Score: 0.8741284539870512
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Labeling errors in datasets are common, if not systematic, in practice. They naturally arise in a variety of contexts-human labeling, noisy labeling, and weak labeling (i.e., image classification), for example. This presents a persistent and pervasive stress on machine learning practice. In particular, neural network (NN) architectures can withstand minor amounts of dataset imperfection with traditional countermeasures such as regularization, data augmentation, and batch normalization. However, major dataset imperfections often prove insurmountable. We propose and study the implementation of Rockafellian Relaxation (RR), a new loss reweighting, architecture-independent methodology, for neural network training. Experiments indicate RR can enhance standard neural network methods to achieve robust performance across classification tasks in computer vision and natural language processing (sentiment analysis). We find that RR can mitigate the effects of dataset corruption due to both (heavy) labeling error and/or adversarial perturbation, demonstrating effectiveness across a variety of data domains and machine learning tasks.
Related papers
- Automatic debiasing of neural networks via moment-constrained learning [0.0]
Naively learning the regression function and taking a sample mean of the target functional results in biased estimators.
We propose moment-constrained learning as a new RR learning approach that addresses some shortcomings in automatic debiasing.
arXiv Detail & Related papers (2024-09-29T20:56:54Z) - DFA-GNN: Forward Learning of Graph Neural Networks by Direct Feedback Alignment [57.62885438406724]
Graph neural networks are recognized for their strong performance across various applications.
BP has limitations that challenge its biological plausibility and affect the efficiency, scalability and parallelism of training neural networks for graph-based tasks.
We propose DFA-GNN, a novel forward learning framework tailored for GNNs with a case study of semi-supervised learning.
arXiv Detail & Related papers (2024-06-04T07:24:51Z) - Error Sensitivity Modulation based Experience Replay: Mitigating Abrupt
Representation Drift in Continual Learning [13.041607703862724]
We propose ESMER, which employs a principled mechanism to modulate error sensitivity in a dual-memory rehearsal-based system.
ESMER effectively reduces forgetting and abrupt drift in representations at the task boundary by gradually adapting to the new task while consolidating knowledge.
Remarkably, it also enables the model to learn under high levels of label noise, which is ubiquitous in real-world data streams.
arXiv Detail & Related papers (2023-02-14T16:35:54Z) - Robust Training under Label Noise by Over-parameterization [41.03008228953627]
We propose a principled approach for robust training of over-parameterized deep networks in classification tasks where a proportion of training labels are corrupted.
The main idea is yet very simple: label noise is sparse and incoherent with the network learned from clean data, so we model the noise and learn to separate it from the data.
Remarkably, when trained using such a simple method in practice, we demonstrate state-of-the-art test accuracy against label noise on a variety of real datasets.
arXiv Detail & Related papers (2022-02-28T18:50:10Z) - Synergistic Network Learning and Label Correction for Noise-robust Image
Classification [28.27739181560233]
Deep Neural Networks (DNNs) tend to overfit training label noise, resulting in poorer model performance in practice.
We propose a robust label correction framework combining the ideas of small loss selection and noise correction.
We demonstrate our method on both synthetic and real-world datasets with different noise types and rates.
arXiv Detail & Related papers (2022-02-27T23:06:31Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
Modern deep neural networks can easily overfit to biased training data containing corrupted labels or class imbalance.
Sample re-weighting methods are popularly used to alleviate this data bias issue.
We propose a meta-model capable of adaptively learning an explicit weighting scheme directly from data.
arXiv Detail & Related papers (2022-02-11T13:49:51Z) - An Introduction to Robust Graph Convolutional Networks [71.68610791161355]
We propose a novel Robust Graph Convolutional Neural Networks for possible erroneous single-view or multi-view data.
By incorporating an extra layers via Autoencoders into traditional graph convolutional networks, we characterize and handle typical error models explicitly.
arXiv Detail & Related papers (2021-03-27T04:47:59Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - Temporal Calibrated Regularization for Robust Noisy Label Learning [60.90967240168525]
Deep neural networks (DNNs) exhibit great success on many tasks with the help of large-scale well annotated datasets.
However, labeling large-scale data can be very costly and error-prone so that it is difficult to guarantee the annotation quality.
We propose a Temporal Calibrated Regularization (TCR) in which we utilize the original labels and the predictions in the previous epoch together.
arXiv Detail & Related papers (2020-07-01T04:48:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.