論文の概要: A General Infrastructure and Workflow for Quadrotor Deep Reinforcement Learning and Reality Deployment
- arxiv url: http://arxiv.org/abs/2504.15129v1
- Date: Mon, 21 Apr 2025 14:25:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-29 16:14:53.925244
- Title: A General Infrastructure and Workflow for Quadrotor Deep Reinforcement Learning and Reality Deployment
- Title(参考訳): 四面体深部強化学習と現実展開のための一般インフラとワークフロー
- Authors: Kangyao Huang, Hao Wang, Yu Luo, Jingyu Chen, Jintao Chen, Xiangkui Zhang, Xiangyang Ji, Huaping Liu,
- Abstract要約: 本稿では, エンドツーエンドの深層強化学習(DRL)ポリシーを四元数へシームレスに移行できるプラットフォームを提案する。
本プラットフォームは, ホバリング, 動的障害物回避, 軌道追尾, 気球打上げ, 未知環境における計画など, 多様な環境を提供する。
- 参考スコア(独自算出の注目度): 48.90852123901697
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deploying robot learning methods to a quadrotor in unstructured outdoor environments is an exciting task. Quadrotors operating in real-world environments by learning-based methods encounter several challenges: a large amount of simulator generated data required for training, strict demands for real-time processing onboard, and the sim-to-real gap caused by dynamic and noisy conditions. Current works have made a great breakthrough in applying learning-based methods to end-to-end control of quadrotors, but rarely mention the infrastructure system training from scratch and deploying to reality, which makes it difficult to reproduce methods and applications. To bridge this gap, we propose a platform that enables the seamless transfer of end-to-end deep reinforcement learning (DRL) policies. We integrate the training environment, flight dynamics control, DRL algorithms, the MAVROS middleware stack, and hardware into a comprehensive workflow and architecture that enables quadrotors' policies to be trained from scratch to real-world deployment in several minutes. Our platform provides rich types of environments including hovering, dynamic obstacle avoidance, trajectory tracking, balloon hitting, and planning in unknown environments, as a physical experiment benchmark. Through extensive empirical validation, we demonstrate the efficiency of proposed sim-to-real platform, and robust outdoor flight performance under real-world perturbations. Details can be found from our website https://emnavi.tech/AirGym/.
- Abstract(参考訳): ロボット学習手法を非構造屋外環境の四輪車に展開することは、エキサイティングな仕事だ。
トレーニングに必要な大量のシミュレータ生成データ、リアルタイム処理の厳格な要求、動的でノイズの多い条件によるシミュレートと現実のギャップなどである。
現在の作業は、学習ベースの手法を四重項のエンドツーエンド制御に適用する上で大きなブレークスルーとなったが、インフラストラクチャシステムのトレーニングをゼロから現実に展開することはめったにないため、メソッドやアプリケーションの再現が困難である。
このギャップを埋めるため、我々はエンドツーエンドの深層強化学習(DRL)ポリシーをシームレスに移行できるプラットフォームを提案する。
トレーニング環境、フライトダイナミクス制御、DRLアルゴリズム、MAVROSミドルウェアスタック、ハードウェアを包括的なワークフローとアーキテクチャに統合し、クオータのポリシーをスクラッチから実世界のデプロイまで、数分でトレーニングできるようにします。
我々のプラットフォームは、物理実験ベンチマークとして、ホバリング、動的障害物回避、軌道追跡、気球打上げ、未知の環境での計画など、多様な環境を提供する。
実験的な検証を通じて,提案したsim-to-realプラットフォームの有効性と,実世界の摂動下での堅牢な屋外飛行性能を実証する。
詳細は私たちのWebサイトhttps://emnavi.tech/AirGym/.comで確認できます。
関連論文リスト
- RAPID: Robust and Agile Planner Using Inverse Reinforcement Learning for Vision-Based Drone Navigation [9.25068777307471]
本稿では,乱雑な環境下でのアジャイルドローン飛行のための学習型ビジュアルプランナを紹介する。
提案したプランナーは、ミリ秒で衝突のないウェイポイントを生成し、ドローンは、異なる知覚、マッピング、計画モジュールを構築することなく、複雑な環境でアジャイルな操作を実行できる。
論文 参考訳(メタデータ) (2025-02-04T06:42:08Z) - Robotic World Model: A Neural Network Simulator for Robust Policy Optimization in Robotics [50.191655141020505]
私たちは世界モデルを学ぶための新しいフレームワークを紹介します。
スケーラブルで堅牢なフレームワークを提供することで、現実のアプリケーションにおいて適応的で効率的なロボットシステムを実現することができる。
論文 参考訳(メタデータ) (2025-01-17T10:39:09Z) - Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
そこで我々は,AVコントローラのトレーニングにAPG(analytic Policy gradients)アプローチを適用可能なシミュレータを提案し,その設計を行う。
提案するフレームワークは, エージェントがより根底的なポリシーを学ぶのを助けるために, 環境力学の勾配を役立てる, エンド・ツー・エンドの訓練ループに, 微分可能シミュレータを組み込む。
ダイナミクスにおけるパフォーマンスとノイズに対する堅牢性の大幅な改善と、全体としてより直感的なヒューマンライクな処理が見られます。
論文 参考訳(メタデータ) (2024-09-12T11:50:06Z) - Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
本研究では,シミュレート・トゥ・リアルな視覚四重項ナビゲーションタスクにおける分布シフトに対する一般化とロバスト性を改善する手法を提案する。
まず,擬似飛行力学とガウススプラッティングを統合してシミュレータを構築し,その後,液状ニューラルネットワークを用いてロバストなナビゲーションポリシーを訓練する。
このようにして、我々は3次元ガウススプラッティングラディアンス場レンダリング、専門家による実演訓練データのプログラミング、およびLiquid Networkのタスク理解能力の進歩を組み合わせたフルスタックの模倣学習プロトコルを得る。
論文 参考訳(メタデータ) (2024-06-21T13:48:37Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-30T23:20:23Z) - DRIFT: Deep Reinforcement Learning for Intelligent Floating Platforms Trajectories [18.420795137038677]
フローティングプラットフォームは、地球上の微小重力環境をエミュレートするための多用途テストベッドとして機能する。
私たちのスイートは、シミュレーションから現実への堅牢性、適応性、優れた転送性を実現します。
論文 参考訳(メタデータ) (2023-10-06T14:11:35Z) - Discrete Control in Real-World Driving Environments using Deep
Reinforcement Learning [2.467408627377504]
本研究では,現実の環境をゲーム環境に移行させる,現実の運転環境におけるフレームワーク(知覚,計画,制御)を紹介する。
実環境における離散制御を学習し,実行するために,既存の強化学習(RL)アルゴリズムを多エージェント設定で提案する。
論文 参考訳(メタデータ) (2022-11-29T04:24:03Z) - Cloud-Edge Training Architecture for Sim-to-Real Deep Reinforcement
Learning [0.8399688944263843]
深層強化学習(DRL)は、環境との相互作用を通じてポリシーを学習することで複雑な制御課題を解決するための有望な手法である。
Sim-to-realアプローチはシミュレーションを利用してDRLポリシーを事前訓練し、現実世界にデプロイする。
本研究では,リアルタイムにDRLエージェントをトレーニングするための分散クラウドエッジアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-03-04T10:27:01Z) - Meta-Reinforcement Learning for Robotic Industrial Insertion Tasks [70.56451186797436]
本研究では,メタ強化学習を用いてシミュレーションの課題の大部分を解決する方法について検討する。
エージェントを訓練して現実の挿入タスクを成功させる手法を実証する。
論文 参考訳(メタデータ) (2020-04-29T18:00:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。