Multi-label Class Incremental Emotion Decoding with Augmented Emotional Semantics Learning
- URL: http://arxiv.org/abs/2405.20600v1
- Date: Fri, 31 May 2024 03:16:54 GMT
- Title: Multi-label Class Incremental Emotion Decoding with Augmented Emotional Semantics Learning
- Authors: Kaicheng Fu, Changde Du, Xiaoyu Chen, Jie Peng, Huiguang He,
- Abstract summary: We propose an augmented emotional semantics learning framework for incremental emotion decoding.
Specifically, we design an emotional relation graph module with label disambiguation to handle the past-missing partial label problem.
An emotional semantics learning module is constructed with a graph autoencoder to obtain emotion embeddings.
- Score: 20.609772647273374
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Emotion decoding plays an important role in affective human-computer interaction. However, previous studies ignored the dynamic real-world scenario, where human experience a blend of multiple emotions which are incrementally integrated into the model, leading to the multi-label class incremental learning (MLCIL) problem. Existing methods have difficulty in solving MLCIL issue due to notorious catastrophic forgetting caused by partial label problem and inadequate label semantics mining. In this paper, we propose an augmented emotional semantics learning framework for multi-label class incremental emotion decoding. Specifically, we design an augmented emotional relation graph module with label disambiguation to handle the past-missing partial label problem. Then, we leverage domain knowledge from affective dimension space to alleviate future-missing partial label problem by knowledge distillation. Besides, an emotional semantics learning module is constructed with a graph autoencoder to obtain emotion embeddings in order to guide the semantic-specific feature decoupling for better multi-label learning. Extensive experiments on three datasets show the superiority of our method for improving emotion decoding performance and mitigating forgetting on MLCIL problem.
Related papers
- Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
Conversational Speech Synthesis (CSS) aims to accurately express an utterance with the appropriate prosody and emotional inflection within a conversational setting.
To address the issue of data scarcity, we meticulously create emotional labels in terms of category and intensity.
Our model outperforms the baseline models in understanding and rendering emotions.
arXiv Detail & Related papers (2023-12-19T08:47:50Z) - Deep Imbalanced Learning for Multimodal Emotion Recognition in
Conversations [15.705757672984662]
Multimodal Emotion Recognition in Conversations (MERC) is a significant development direction for machine intelligence.
Many data in MERC naturally exhibit an imbalanced distribution of emotion categories, and researchers ignore the negative impact of imbalanced data on emotion recognition.
We propose the Class Boundary Enhanced Representation Learning (CBERL) model to address the imbalanced distribution of emotion categories in raw data.
We have conducted extensive experiments on the IEMOCAP and MELD benchmark datasets, and the results show that CBERL has achieved a certain performance improvement in the effectiveness of emotion recognition.
arXiv Detail & Related papers (2023-12-11T12:35:17Z) - Leveraging Label Correlations in a Multi-label Setting: A Case Study in
Emotion [0.0]
We exploit label correlations in multi-label emotion recognition models to improve emotion detection.
We demonstrate state-of-the-art performance across Spanish, English, and Arabic in SemEval 2018 Task 1 E-c using monolingual BERT-based models.
arXiv Detail & Related papers (2022-10-28T02:27:18Z) - Multi-view Multi-label Fine-grained Emotion Decoding from Human Brain
Activity [9.446422699647625]
Decoding emotional states from human brain activity plays an important role in brain-computer interfaces.
Existing emotion decoding methods still have two main limitations.
We propose a novel multi-view multi-label hybrid model for fine-grained emotion decoding.
arXiv Detail & Related papers (2022-10-26T05:56:54Z) - Multimodal Emotion Recognition with Modality-Pairwise Unsupervised
Contrastive Loss [80.79641247882012]
We focus on unsupervised feature learning for Multimodal Emotion Recognition (MER)
We consider discrete emotions, and as modalities text, audio and vision are used.
Our method, as being based on contrastive loss between pairwise modalities, is the first attempt in MER literature.
arXiv Detail & Related papers (2022-07-23T10:11:24Z) - The Emotion is Not One-hot Encoding: Learning with Grayscale Label for
Emotion Recognition in Conversation [0.0]
In emotion recognition in conversation (ERC), the emotion of the current utterance is predicted by considering the previous context.
We introduce several methods for constructing grayscale labels and confirm that each method improves the emotion recognition performance.
arXiv Detail & Related papers (2022-06-15T08:14:42Z) - MEmoBERT: Pre-training Model with Prompt-based Learning for Multimodal
Emotion Recognition [118.73025093045652]
We propose a pre-training model textbfMEmoBERT for multimodal emotion recognition.
Unlike the conventional "pre-train, finetune" paradigm, we propose a prompt-based method that reformulates the downstream emotion classification task as a masked text prediction.
Our proposed MEmoBERT significantly enhances emotion recognition performance.
arXiv Detail & Related papers (2021-10-27T09:57:00Z) - Emotion Recognition from Multiple Modalities: Fundamentals and
Methodologies [106.62835060095532]
We discuss several key aspects of multi-modal emotion recognition (MER)
We begin with a brief introduction on widely used emotion representation models and affective modalities.
We then summarize existing emotion annotation strategies and corresponding computational tasks.
Finally, we outline several real-world applications and discuss some future directions.
arXiv Detail & Related papers (2021-08-18T21:55:20Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
We present a novel deep learning-based framework to generate embedding representations of fine-grained emotions.
Our framework integrates a contextualized embedding encoder with a multi-head probing model.
Our model is evaluated on the Empathetic Dialogue dataset and shows the state-of-the-art result for classifying 32 emotions.
arXiv Detail & Related papers (2021-04-20T16:55:15Z) - Acted vs. Improvised: Domain Adaptation for Elicitation Approaches in
Audio-Visual Emotion Recognition [29.916609743097215]
Key challenges in developing generalized automatic emotion recognition systems include scarcity of labeled data and lack of gold-standard references.
In this work, we regard the emotion elicitation approach as domain knowledge, and explore domain transfer learning techniques on emotional utterances.
arXiv Detail & Related papers (2021-04-05T15:59:31Z) - Facial Emotion Recognition with Noisy Multi-task Annotations [88.42023952684052]
We introduce a new problem of facial emotion recognition with noisy multi-task annotations.
For this new problem, we suggest a formulation from the point of joint distribution match view.
We exploit a new method to enable the emotion prediction and the joint distribution learning.
arXiv Detail & Related papers (2020-10-19T20:39:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.