Lotus at SemEval-2025 Task 11: RoBERTa with Llama-3 Generated Explanations for Multi-Label Emotion Classification
- URL: http://arxiv.org/abs/2502.19935v3
- Date: Wed, 16 Apr 2025 10:17:33 GMT
- Title: Lotus at SemEval-2025 Task 11: RoBERTa with Llama-3 Generated Explanations for Multi-Label Emotion Classification
- Authors: Niloofar Ranjbar, Hamed Baghbani,
- Abstract summary: This paper presents a novel approach for multi-label emotion detection, where Llama-3 is used to generate explanatory content that clarifies ambiguous emotional expressions.<n>By incorporating explanatory context, our method improves F1-scores, particularly for emotions like fear, joy, and sadness, and outperforms text-only models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel approach for multi-label emotion detection, where Llama-3 is used to generate explanatory content that clarifies ambiguous emotional expressions, thereby enhancing RoBERTa's emotion classification performance. By incorporating explanatory context, our method improves F1-scores, particularly for emotions like fear, joy, and sadness, and outperforms text-only models. The addition of explanatory content helps resolve ambiguity, addresses challenges like overlapping emotional cues, and enhances multi-label classification, marking a significant advancement in emotion detection tasks.
Related papers
- Disentangle Identity, Cooperate Emotion: Correlation-Aware Emotional Talking Portrait Generation [63.94836524433559]
DICE-Talk is a framework for disentangling identity with emotion and cooperating emotions with similar characteristics.
We develop a disentangled emotion embedder that jointly models audio-visual emotional cues through cross-modal attention.
Second, we introduce a correlation-enhanced emotion conditioning module with learnable Emotion Banks.
Third, we design an emotion discrimination objective that enforces affective consistency during the diffusion process.
arXiv Detail & Related papers (2025-04-25T05:28:21Z) - Multi-label Class Incremental Emotion Decoding with Augmented Emotional Semantics Learning [20.609772647273374]
We propose an augmented emotional semantics learning framework for incremental emotion decoding.
Specifically, we design an emotional relation graph module with label disambiguation to handle the past-missing partial label problem.
An emotional semantics learning module is constructed with a graph autoencoder to obtain emotion embeddings.
arXiv Detail & Related papers (2024-05-31T03:16:54Z) - LastResort at SemEval-2024 Task 3: Exploring Multimodal Emotion Cause Pair Extraction as Sequence Labelling Task [3.489826905722736]
SemEval 2024 introduces the task of Multimodal Emotion Cause Analysis in Conversations.
This paper proposes models that tackle this task as an utterance labeling and a sequence labeling problem.
In the official leaderboard for the task, our architecture was ranked 8th, achieving an F1-score of 0.1759 on the leaderboard.
arXiv Detail & Related papers (2024-04-02T16:32:49Z) - Emotion Rendering for Conversational Speech Synthesis with Heterogeneous
Graph-Based Context Modeling [50.99252242917458]
Conversational Speech Synthesis (CSS) aims to accurately express an utterance with the appropriate prosody and emotional inflection within a conversational setting.
To address the issue of data scarcity, we meticulously create emotional labels in terms of category and intensity.
Our model outperforms the baseline models in understanding and rendering emotions.
arXiv Detail & Related papers (2023-12-19T08:47:50Z) - Emotion and Sentiment Guided Paraphrasing [3.5027291542274366]
We introduce a new task of fine-grained emotional paraphrasing along emotion gradients.
We reconstruct several widely used paraphrasing datasets by augmenting the input and target texts with their fine-grained emotion labels.
We propose a framework for emotion and sentiment guided paraphrasing by leveraging pre-trained language models for conditioned text generation.
arXiv Detail & Related papers (2023-06-08T20:59:40Z) - Emotion Recognition from Multiple Modalities: Fundamentals and
Methodologies [106.62835060095532]
We discuss several key aspects of multi-modal emotion recognition (MER)
We begin with a brief introduction on widely used emotion representation models and affective modalities.
We then summarize existing emotion annotation strategies and corresponding computational tasks.
Finally, we outline several real-world applications and discuss some future directions.
arXiv Detail & Related papers (2021-08-18T21:55:20Z) - Affective Image Content Analysis: Two Decades Review and New
Perspectives [132.889649256384]
We will comprehensively review the development of affective image content analysis (AICA) in the recent two decades.
We will focus on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence.
We discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
arXiv Detail & Related papers (2021-06-30T15:20:56Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
We propose a well-grounded circular-structured representation to utilize the prior knowledge for visual emotion distribution learning.
To be specific, we first construct an Emotion Circle to unify any emotional state within it.
On the proposed Emotion Circle, each emotion distribution is represented with an emotion vector, which is defined with three attributes.
arXiv Detail & Related papers (2021-06-23T14:53:27Z) - Acted vs. Improvised: Domain Adaptation for Elicitation Approaches in
Audio-Visual Emotion Recognition [29.916609743097215]
Key challenges in developing generalized automatic emotion recognition systems include scarcity of labeled data and lack of gold-standard references.
In this work, we regard the emotion elicitation approach as domain knowledge, and explore domain transfer learning techniques on emotional utterances.
arXiv Detail & Related papers (2021-04-05T15:59:31Z) - Target Guided Emotion Aware Chat Machine [58.8346820846765]
The consistency of a response to a given post at semantic-level and emotional-level is essential for a dialogue system to deliver human-like interactions.
This article proposes a unifed end-to-end neural architecture, which is capable of simultaneously encoding the semantics and the emotions in a post.
arXiv Detail & Related papers (2020-11-15T01:55:37Z) - Facial Emotion Recognition with Noisy Multi-task Annotations [88.42023952684052]
We introduce a new problem of facial emotion recognition with noisy multi-task annotations.
For this new problem, we suggest a formulation from the point of joint distribution match view.
We exploit a new method to enable the emotion prediction and the joint distribution learning.
arXiv Detail & Related papers (2020-10-19T20:39:37Z) - Challenges in Emotion Style Transfer: An Exploration with a Lexical
Substitution Pipeline [16.3589458084367]
We design a transparent emotion style transfer pipeline based on three steps.
We explore what cases lexical substitution can vary the emotional load of texts.
We find, indeed, that simultaneous adjustments of content and emotion are conflicting objectives.
arXiv Detail & Related papers (2020-05-15T16:11:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.