Linear Contracts in Multitasking: Robustness, Uniformity, and Learning
- URL: http://arxiv.org/abs/2405.20642v2
- Date: Mon, 10 Mar 2025 04:55:43 GMT
- Title: Linear Contracts in Multitasking: Robustness, Uniformity, and Learning
- Authors: Shiliang Zuo,
- Abstract summary: We study the special class of linear contracts from three perspectives: robustness, uniformity, and learning.<n>We propose instrumental regression methods to estimate the optimal contract parameters in an offline setting, or to learn the optimal contract in an online setting.
- Score: 2.296475290901356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we study the multitasking principal-agent problem. The agent performs several task for the principal, and the principal posts a contract incentivizing the agent to exert effort. The principal can observe a signal for each task, and the contract is a mapping from the space of possible signals to a payment. We study the special class of linear contracts from three perspectives: robustness, uniformity, and learning. Firstly, we show a robustness result: in an ambiguous setting when only first moment information is known, there is a linear contract maximizing the principal's payoff in a worst-case scenario. Secondly, we show a uniformity result: when the agent's cost function is homogeneous to a certain degree and the the principal's utility takes a linear form across tasks, then the optimal contract depends on the agent's cost function only through its homogeneuity degree. Thirdly, we study the problem of learning an optimal linear contract through observational data. We identify this as an measurement error model, and propose instrumental regression methods to estimate the optimal contract parameters in an offline setting, or to learn the optimal contract in an online setting.
Related papers
- The Pseudo-Dimension of Contracts [8.710927418537908]
Algorithmic contract design studies scenarios where a principal incentivizes an agent to exert effort on her behalf.
In this work, we focus on settings where the agent's type is drawn from an unknown distribution, and an offline learning framework for learning near-optimal contracts from sample agent types.
A central tool in our analysis is the notion of pseudo-dimension from statistical learning theory.
arXiv Detail & Related papers (2025-01-24T13:13:50Z) - Contractual Reinforcement Learning: Pulling Arms with Invisible Hands [68.77645200579181]
We propose a theoretical framework for aligning economic interests of different stakeholders in the online learning problems through contract design.
For the planning problem, we design an efficient dynamic programming algorithm to determine the optimal contracts against the far-sighted agent.
For the learning problem, we introduce a generic design of no-regret learning algorithms to untangle the challenges from robust design of contracts to the balance of exploration and exploitation.
arXiv Detail & Related papers (2024-07-01T16:53:00Z) - New Perspectives in Online Contract Design [2.296475290901356]
This work studies the repeated principal-agent problem from an online learning perspective.
The principal's goal is to learn the optimal contract that maximizes her utility through repeated interactions.
arXiv Detail & Related papers (2024-03-11T20:28:23Z) - Contracting with a Learning Agent [32.950708673180436]
We study the study of repeated contracts with a learning agent, focusing on agents who achieve no-regret outcomes.
We achieve an optimal solution to this problem for a canonical contract setting, in which the agent's choice among multiple actions leads to success/failure.
Our results generalize beyond success/failure, to arbitrary non-linear contracts which the principal rescales dynamically.
arXiv Detail & Related papers (2024-01-29T14:53:22Z) - Online non-parametric likelihood-ratio estimation by Pearson-divergence
functional minimization [55.98760097296213]
We introduce a new framework for online non-parametric LRE (OLRE) for the setting where pairs of iid observations $(x_t sim p, x'_t sim q)$ are observed over time.
We provide theoretical guarantees for the performance of the OLRE method along with empirical validation in synthetic experiments.
arXiv Detail & Related papers (2023-11-03T13:20:11Z) - Learning Optimal Contracts: How to Exploit Small Action Spaces [37.92189925462977]
We study principal-agent problems in which a principal commits to an outcome-dependent payment scheme.
We design an algorithm that learns an approximately-optimal contract with high probability.
It can also be employed to provide a $tildemathcalO(T4/5)$ regret bound in the related online learning setting.
arXiv Detail & Related papers (2023-09-18T14:18:35Z) - Delegating Data Collection in Decentralized Machine Learning [67.0537668772372]
Motivated by the emergence of decentralized machine learning (ML) ecosystems, we study the delegation of data collection.
We design optimal and near-optimal contracts that deal with two fundamental information asymmetries.
We show that a principal can cope with such asymmetry via simple linear contracts that achieve 1-1/e fraction of the optimal utility.
arXiv Detail & Related papers (2023-09-04T22:16:35Z) - Deep Contract Design via Discontinuous Networks [23.293185030103544]
We introduce a novel representation: the Discontinuous ReLU (DeLU) network, which models the principal's utility as a discontinuous piecewise affine function of the design of a contract.
DeLU networks implicitly learn closed-form expressions for the incentive compatibility constraints of the agent and the utility objective of the principal.
We provide empirical results that demonstrate success in approximating the principal's utility function with a small number of training samples and scaling to find approximately optimal contracts on problems with a large number of actions and outcomes.
arXiv Detail & Related papers (2023-07-05T14:20:20Z) - Learning to Incentivize Information Acquisition: Proper Scoring Rules
Meet Principal-Agent Model [64.94131130042275]
We study the incentivized information acquisition problem, where a principal hires an agent to gather information on her behalf.
We design a provably sample efficient algorithm that tailors the UCB algorithm to our model.
Our algorithm features a delicate estimation procedure for the optimal profit of the principal, and a conservative correction scheme that ensures the desired agent's actions are incentivized.
arXiv Detail & Related papers (2023-03-15T13:40:16Z) - The Sample Complexity of Online Contract Design [120.9833763323407]
We study the hidden-action principal-agent problem in an online setting.
In each round, the principal posts a contract that specifies the payment to the agent based on each outcome.
The agent then makes a strategic choice of action that maximizes her own utility, but the action is not directly observable by the principal.
arXiv Detail & Related papers (2022-11-10T17:59:42Z) - Multi-task Bias-Variance Trade-off Through Functional Constraints [102.64082402388192]
Multi-task learning aims to acquire a set of functions that perform well for diverse tasks.
In this paper we draw intuition from the two extreme learning scenarios -- a single function for all tasks, and a task-specific function that ignores the other tasks.
We introduce a constrained learning formulation that enforces domain specific solutions to a central function.
arXiv Detail & Related papers (2022-10-27T16:06:47Z) - An Experimental Design Perspective on Model-Based Reinforcement Learning [73.37942845983417]
In practical applications of RL, it is expensive to observe state transitions from the environment.
We propose an acquisition function that quantifies how much information a state-action pair would provide about the optimal solution to a Markov decision process.
arXiv Detail & Related papers (2021-12-09T23:13:57Z) - Measuring Model Fairness under Noisy Covariates: A Theoretical
Perspective [26.704446184314506]
We study the problem of measuring the fairness of a machine learning model under noisy information.
We present a theoretical analysis that aims to characterize weaker conditions under which accurate fairness evaluation is possible.
arXiv Detail & Related papers (2021-05-20T18:36:28Z) - How to distribute data across tasks for meta-learning? [59.608652082495624]
We show that the optimal number of data points per task depends on the budget, but it converges to a unique constant value for large budgets.
Our results suggest a simple and efficient procedure for data collection.
arXiv Detail & Related papers (2021-03-15T15:38:47Z) - Online Apprenticeship Learning [58.45089581278177]
In Apprenticeship Learning (AL), we are given a Markov Decision Process (MDP) without access to the cost function.
The goal is to find a policy that matches the expert's performance on some predefined set of cost functions.
We show that the OAL problem can be effectively solved by combining two mirror descent based no-regret algorithms.
arXiv Detail & Related papers (2021-02-13T12:57:51Z) - Robust Meta-learning for Mixed Linear Regression with Small Batches [34.94138630547603]
We study a fundamental question: can abundant small-data tasks compensate for the lack of big-data tasks?
Existing approaches show that such a trade-off is efficiently achievable, with the help of medium-sized tasks with $Omega(k1/2)$ examples each.
We introduce a spectral approach that is simultaneously robust under both scenarios.
arXiv Detail & Related papers (2020-06-17T07:59:05Z) - Hierarchical Reinforcement Learning as a Model of Human Task
Interleaving [60.95424607008241]
We develop a hierarchical model of supervisory control driven by reinforcement learning.
The model reproduces known empirical effects of task interleaving.
The results support hierarchical RL as a plausible model of task interleaving.
arXiv Detail & Related papers (2020-01-04T17:53:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.