論文の概要: Sign is Not a Remedy: Multiset-to-Multiset Message Passing for Learning on Heterophilic Graphs
- arxiv url: http://arxiv.org/abs/2405.20652v1
- Date: Fri, 31 May 2024 07:39:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 15:16:48.633859
- Title: Sign is Not a Remedy: Multiset-to-Multiset Message Passing for Learning on Heterophilic Graphs
- Title(参考訳): サインは治療ではない: 異種グラフの学習のためのマルチセットからマルチセットのメッセージパス
- Authors: Langzhang Liang, Sunwoo Kim, Kijung Shin, Zenglin Xu, Shirui Pan, Yuan Qi,
- Abstract要約: 我々は、Multiset to Multiset GNN(M2M-GNN)と呼ばれる新しいメッセージパッシング機能を提案する。
M2M-GNNは上述のSMPの限界を効果的に緩和し, 比較性能が向上することを示した。
- 参考スコア(独自算出の注目度): 77.42221150848535
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNNs) have gained significant attention as a powerful modeling and inference method, especially for homophilic graph-structured data. To empower GNNs in heterophilic graphs, where adjacent nodes exhibit dissimilar labels or features, Signed Message Passing (SMP) has been widely adopted. However, there is a lack of theoretical and empirical analysis regarding the limitations of SMP. In this work, we unveil some potential pitfalls of SMP and their remedies. We first identify two limitations of SMP: undesirable representation update for multi-hop neighbors and vulnerability against oversmoothing issues. To overcome these challenges, we propose a novel message passing function called Multiset to Multiset GNN(M2M-GNN). Our theoretical analyses and extensive experiments demonstrate that M2M-GNN effectively alleviates the aforementioned limitations of SMP, yielding superior performance in comparison
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、特にホモ親和性グラフ構造化データにおいて、強力なモデリングと推論手法として注目されている。
隣接ノードが異種ラベルや特徴を示す異種グラフでGNNを強化するために、Signed Message Passing (SMP)が広く採用されている。
しかし、SMPの限界に関する理論的および実証的な分析が欠如している。
本稿では,SMPとその対策の潜在的な落とし穴について紹介する。
まず、マルチホップ隣人に対する望ましくない表現更新と、過度にスムースな問題に対する脆弱性の2つの制限を識別する。
これらの課題を克服するために,Multiset to Multiset GNN(M2M-GNN)と呼ばれる新しいメッセージパッシング関数を提案する。
我々の理論解析と広範な実験により、M2M-GNNは前述のSMPの制限を効果的に緩和し、比較性能が優れていることが示された。
関連論文リスト
- Better Not to Propagate: Understanding Edge Uncertainty and Over-smoothing in Signed Graph Neural Networks [3.4498722449655066]
本稿では,学習中のブロックと署名された伝搬の動的選択と一体化して,ホモフィリーとエッジの誤差比を推定する新しい手法を提案する。
我々の理論解析は, 広範囲な実験によって支持され, 高エッジ誤差比下では, 符号付き伝搬よりもブロックMPの方が有効であることを示す。
論文 参考訳(メタデータ) (2024-08-09T06:46:06Z) - Spatio-Spectral Graph Neural Networks [50.277959544420455]
比スペクトルグラフネットワーク(S$2$GNN)を提案する。
S$2$GNNは空間的およびスペクトル的にパラメータ化されたグラフフィルタを組み合わせる。
S$2$GNNsは、MPGNNsよりも厳密な近似理論誤差境界を生じる。
論文 参考訳(メタデータ) (2024-05-29T14:28:08Z) - Probabilistic Graph Rewiring via Virtual Nodes [21.273828055299408]
メッセージパッシンググラフニューラルネットワーク(MPNN)は、グラフベースの機械学習の強力なパラダイムとして登場した。
MPNNは、受信フィールドの制限や構造的ボトルネックが、グラフ内の情報フローを妨げている、アンダーリーチ(low-reaching)やオーバースキャッシング(over-squashing)といった課題に直面している。
本稿では,暗黙的にメッセージパッシングニューラルネットワーク(IPR-MPNN)を提案する。
論文 参考訳(メタデータ) (2024-05-27T16:11:49Z) - How does over-squashing affect the power of GNNs? [39.52168593457813]
グラフニューラルネットワーク(GNN)は、グラフ構造化データ上での機械学習のための最先端モデルである。
与えられた容量のMPNNがどのノード特徴の関数クラスを学習できるかを決定するための厳密な分析を提供する。
一対のノード間の十分な通信を保証するために、MPNNの容量は十分大きすぎることを証明する。
論文 参考訳(メタデータ) (2023-06-06T11:15:53Z) - MGNNI: Multiscale Graph Neural Networks with Implicit Layers [53.75421430520501]
暗黙グラフニューラルネットワーク(GNN)は、基礎となるグラフの長距離依存性をキャプチャするために提案されている。
暗黙的GNNの2つの弱点は、長距離依存を捉えるための限られた有効範囲による制約付き表現性と、複数の解像度でグラフ上のマルチスケール情報をキャプチャする能力の欠如である。
グラフ上のマルチスケール構造をモデル化できる暗黙の層(MGNNI)を持つマルチスケールグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-10-15T18:18:55Z) - RU-Net: Regularized Unrolling Network for Scene Graph Generation [92.95032610978511]
シーングラフ生成(SGG)は、オブジェクトを検出し、各オブジェクト間の関係を予測することを目的としている。
既存のSGG法は,(1)あいまいな対象表現,2)関係予測の多様性の低下など,いくつかの問題に悩まされることが多い。
両問題に対処する正規化アンローリングネットワーク(RU-Net)を提案する。
論文 参考訳(メタデータ) (2022-05-03T04:21:15Z) - Boosting Graph Neural Networks by Injecting Pooling in Message Passing [4.952681349410351]
オーバースムーシングを防止するために,新しい,適応可能な,強力なMPフレームワークを提案する。
我々の両側MPは、ノードのクラス情報を利用して、ペアワイズなモジュラー勾配を推定する。
5つの中規模ベンチマークデータセットの実験から、二値MPは過度なスムーシングを緩和することで性能を向上させることが示されている。
論文 参考訳(メタデータ) (2022-02-08T08:21:20Z) - Permutation-equivariant and Proximity-aware Graph Neural Networks with
Stochastic Message Passing [88.30867628592112]
グラフニューラルネットワーク(GNN)は、グラフ上の新たな機械学習モデルである。
置換等価性と近接認識性は、GNNにとって非常に望ましい2つの重要な特性である。
既存のGNNは、主にメッセージパッシング機構に基づいており、同時に2つの特性を保存できないことを示す。
ノードの近さを保つため,既存のGNNをノード表現で拡張する。
論文 参考訳(メタデータ) (2020-09-05T16:46:56Z) - Optimization and Generalization Analysis of Transduction through
Gradient Boosting and Application to Multi-scale Graph Neural Networks [60.22494363676747]
現在のグラフニューラルネットワーク(GNN)は、オーバースムーシング(over-smoothing)と呼ばれる問題のため、自分自身を深くするのは難しいことが知られている。
マルチスケールGNNは、オーバースムーシング問題を緩和するための有望なアプローチである。
マルチスケールGNNを含むトランスダクティブ学習アルゴリズムの最適化と一般化を保証する。
論文 参考訳(メタデータ) (2020-06-15T17:06:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。