論文の概要: Hybrid Fourier Score Distillation for Efficient One Image to 3D Object Generation
- arxiv url: http://arxiv.org/abs/2405.20669v2
- Date: Tue, 08 Oct 2024 09:45:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-10 14:27:41.821013
- Title: Hybrid Fourier Score Distillation for Efficient One Image to 3D Object Generation
- Title(参考訳): 3次元オブジェクト生成に有効な1次元画像のためのハイブリッドフーリエスコア蒸留法
- Authors: Shuzhou Yang, Yu Wang, Haijie Li, Jiarui Meng, Yanmin Wu, Xiandong Meng, Jian Zhang,
- Abstract要約: 単一の画像から3D生成は、制御可能な3D資産を作る上で重要な要素である。
2D-3Dハイブリッドフーリエスコア蒸留目標関数hy-FSDを提案する。
hy-FSDは既存の3D生成手法に統合でき、性能が大幅に向上する。
- 参考スコア(独自算出の注目度): 42.83810819513537
- License:
- Abstract: Single image-to-3D generation is pivotal for crafting controllable 3D assets. Given its under-constrained nature, we attempt to leverage 3D geometric priors from a novel view diffusion model and 2D appearance priors from an image generation model to guide the optimization process. We note that there is a disparity between the generation priors of these two diffusion models, leading to their different appearance outputs. Specifically, image generation models tend to deliver more detailed visuals, whereas novel view models produce consistent yet over-smooth results across different views. Directly combining them leads to suboptimal effects due to their appearance conflicts. Hence, we propose a 2D-3D hybrid Fourier Score Distillation objective function, hy-FSD. It optimizes 3D Gaussians using 3D priors in spatial domain to ensure geometric consistency, while exploiting 2D priors in the frequency domain through Fourier transform for better visual quality. hy-FSD can be integrated into existing 3D generation methods and produce significant performance gains. With this technique, we further develop an image-to-3D generation pipeline to create high-quality 3D objects within one minute, named Fourier123. Extensive experiments demonstrate that Fourier123 excels in efficient generation with rapid convergence speed and visually-friendly generation results.
- Abstract(参考訳): 単一の画像から3D生成は、制御可能な3D資産を作る上で重要な要素である。
その制約の少ない性質を考慮し、新しいビュー拡散モデルと画像生成モデルから2次元の外観モデルから3次元幾何学的先行性を活用して最適化プロセスの導出を試みる。
これら2つの拡散モデルの生成前の差があることに注意し、異なる外観出力をもたらすことに留意する。
具体的には、画像生成モデルはより詳細なビジュアルを提供する傾向があり、一方、新しいビューモデルは異なるビューに対して一貫性があるが、過度に滑らかな結果をもたらす。
直接結合すると、外見上の矛盾により、最適以下の効果が生じる。
そこで我々は2D-3Dハイブリッドフーリエスコア蒸留目標関数hy-FSDを提案する。
空間領域の3D前駆体を用いて3Dガウスを最適化し、幾何学的整合性を確保するとともに、フーリエ変換による周波数領域の2D前駆体を利用して視覚的品質を向上させる。
hy-FSDは既存の3D生成手法に統合でき、性能が大幅に向上する。
この技術により、Fourier123という高品質な3Dオブジェクトを1分以内で作成できる画像から3D生成パイプラインをさらに開発する。
広汎な実験により、フーリエ123は高速収束速度と視覚に優しい生成結果で効率的に生成できることが示されている。
関連論文リスト
- Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors [17.544733016978928]
単一の画像から3Dオブジェクトを生成するには、野生で撮影された未ポーズのRGB画像から、目に見えない景色の完全な3D形状とテクスチャを推定する必要がある。
3次元オブジェクト生成の最近の進歩は、物体の形状とテクスチャを再構築する技術を導入している。
本稿では, この限界に対応するために, 2次元拡散モデルと3次元拡散モデルとのギャップを埋めることを提案する。
論文 参考訳(メタデータ) (2024-10-12T10:14:11Z) - Unique3D: High-Quality and Efficient 3D Mesh Generation from a Single Image [28.759158325097093]
Unique3Dは、シングルビュー画像から高品質な3Dメッシュを効率的に生成するための、新しい画像間3Dフレームワークである。
我々のフレームワークは、最先端世代の忠実さと強力な一般化性を備えている。
論文 参考訳(メタデータ) (2024-05-30T17:59:54Z) - Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior [57.986512832738704]
本稿では,2次元拡散モデルを再学習することなく,抽出した参照オブジェクトから3次元先行を明示的に注入する,電流パイプラインを備えた新しいフレームワークSculpt3Dを提案する。
具体的には、スパース線サンプリングによるキーポイントの監督により、高品質で多様な3次元形状を保証できることを実証する。
これら2つの分離された設計は、参照オブジェクトからの3D情報を利用して、2D拡散モデルの生成品質を保ちながら、3Dオブジェクトを生成する。
論文 参考訳(メタデータ) (2024-03-14T07:39:59Z) - Text-to-3D Generation with Bidirectional Diffusion using both 2D and 3D
priors [16.93758384693786]
双方向拡散(Bidirectional Diffusion、BiDiff)は、3次元と2次元の拡散プロセスの両方を組み込んだ統合フレームワークである。
我々のモデルは高品質で多種多様でスケーラブルな3D生成を実現する。
論文 参考訳(メタデータ) (2023-12-07T10:00:04Z) - One-2-3-45++: Fast Single Image to 3D Objects with Consistent Multi-View
Generation and 3D Diffusion [32.29687304798145]
One-2-3-45++は、1つの画像を1分で詳細な3Dテクスチャメッシュに変換する革新的な方法である。
提案手法は,2次元拡散モデルに埋め込まれた広範囲な知識を,貴重な3次元データから活用することを目的としている。
論文 参考訳(メタデータ) (2023-11-14T03:40:25Z) - Guide3D: Create 3D Avatars from Text and Image Guidance [55.71306021041785]
Guide3Dは拡散モデルに基づく3Dアバター生成のためのテキスト・画像誘導生成モデルである。
我々のフレームワークは、トポロジカルかつ構造的に正しい幾何と高分解能なテクスチャを生成する。
論文 参考訳(メタデータ) (2023-08-18T17:55:47Z) - Magic123: One Image to High-Quality 3D Object Generation Using Both 2D
and 3D Diffusion Priors [104.79392615848109]
Magic123は、高品質でテクスチャ化された3Dメッシュのための、2段階の粗大なアプローチである。
最初の段階では、粗い幾何学を生成するために、神経放射場を最適化する。
第2段階では、視覚的に魅力的なテクスチャを持つ高分解能メッシュを生成するために、メモリ効率のよい微分可能なメッシュ表現を採用する。
論文 参考訳(メタデータ) (2023-06-30T17:59:08Z) - NeRF-GAN Distillation for Efficient 3D-Aware Generation with
Convolutions [97.27105725738016]
GAN(Generative Adversarial Networks)のようなニューラルラジアンスフィールド(NeRF)と生成モデルの統合は、単一ビュー画像から3D認識生成を変換した。
提案手法は,ポーズ条件付き畳み込みネットワークにおいて,事前学習したNeRF-GANの有界遅延空間を再利用し,基礎となる3次元表現に対応する3D一貫性画像を直接生成する手法である。
論文 参考訳(メタデータ) (2023-03-22T18:59:48Z) - Efficient Geometry-aware 3D Generative Adversarial Networks [50.68436093869381]
既存の3D GANは計算集約的であるか、3D一貫性のない近似を行う。
本研究では、3D GANの計算効率と画質をこれらの近似に頼らずに改善する。
本稿では,高解像度のマルチビュー一貫性画像だけでなく,高品質な3次元形状をリアルタイムに合成する,表現型ハイブリッド・明示型ネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-15T08:01:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。