論文の概要: Investigating and unmasking feature-level vulnerabilities of CNNs to adversarial perturbations
- arxiv url: http://arxiv.org/abs/2405.20672v1
- Date: Fri, 31 May 2024 08:14:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 15:16:48.600043
- Title: Investigating and unmasking feature-level vulnerabilities of CNNs to adversarial perturbations
- Title(参考訳): 敵対的摂動に対するCNNの特徴レベル脆弱性の調査と解析
- Authors: Davide Coppola, Hwee Kuan Lee,
- Abstract要約: 本研究では,畳み込みニューラルネットワーク(CNN)に対する対向摂動の影響について検討する。
本稿では,CNNの脆弱性を逆方向の摂動に対して調査するために,逆方向干渉フレームワークを導入する。
- 参考スコア(独自算出の注目度): 3.4530027457862
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study explores the impact of adversarial perturbations on Convolutional Neural Networks (CNNs) with the aim of enhancing the understanding of their underlying mechanisms. Despite numerous defense methods proposed in the literature, there is still an incomplete understanding of this phenomenon. Instead of treating the entire model as vulnerable, we propose that specific feature maps learned during training contribute to the overall vulnerability. To investigate how the hidden representations learned by a CNN affect its vulnerability, we introduce the Adversarial Intervention framework. Experiments were conducted on models trained on three well-known computer vision datasets, subjecting them to attacks of different nature. Our focus centers on the effects that adversarial perturbations to a model's initial layer have on the overall behavior of the model. Empirical results revealed compelling insights: a) perturbing selected channel combinations in shallow layers causes significant disruptions; b) the channel combinations most responsible for the disruptions are common among different types of attacks; c) despite shared vulnerable combinations of channels, different attacks affect hidden representations with varying magnitudes; d) there exists a positive correlation between a kernel's magnitude and its vulnerability. In conclusion, this work introduces a novel framework to study the vulnerability of a CNN model to adversarial perturbations, revealing insights that contribute to a deeper understanding of the phenomenon. The identified properties pave the way for the development of efficient ad-hoc defense mechanisms in future applications.
- Abstract(参考訳): 本研究は, 畳み込みニューラルネットワーク(CNN)に対する敵対的摂動の影響について検討し, その基盤となるメカニズムの理解を深めることを目的とした。
文献では多くの防衛手法が提案されているが、この現象についてはまだ不完全な理解が残っている。
モデル全体を脆弱性として扱う代わりに、トレーニング中に学習した特定の特徴マップが全体的な脆弱性に寄与することを提案します。
CNNが学習した隠れ表現がその脆弱性にどのように影響するかを調べるために、Adversarial Interventionフレームワークを導入する。
実験は、よく知られた3つのコンピュータビジョンデータセットで訓練されたモデルで行われ、異なる性質の攻撃を受けた。
我々の焦点は、モデルの初期層に対する敵の摂動がモデル全体の振舞いに与える影響に焦点を当てる。
実験の結果、説得力のある洞察が浮かび上がった。
a) 浅い層に選択されたチャネルの組み合わせが大きな破壊を引き起こすこと。
b) 破壊に最も責任を負うチャネルの組み合わせは,異なる種類の攻撃に共通する。
c) チャンネルの脆弱な組み合わせにもかかわらず,異なる攻撃は,さまざまな大きさの隠蔽表現に影響を及ぼす。
d) カーネルの規模と脆弱性の間には正の相関関係が存在する。
結論として, 本研究は, CNNモデルの逆摂動に対する脆弱性を研究するための新しい枠組みを導入し, 現象のより深い理解に寄与する洞察を明らかにする。
同定された特性は、将来の応用において効率的なアドホック防御機構を開発するための道を開く。
関連論文リスト
- The Anatomy of Adversarial Attacks: Concept-based XAI Dissection [1.2916188356754918]
XAI技術を用いた畳み込みニューラルネットワーク(CNN)で学習した概念に対するAAの影響について検討する。
AAsは機能空間における概念構成の大幅な変更を誘発し、新しい概念を導入したり、既存の概念を変更したりする。
我々の発見は、より堅牢で解釈可能なディープラーニングモデルを開発するための道を開いた。
論文 参考訳(メタデータ) (2024-03-25T13:57:45Z) - A Survey on Transferability of Adversarial Examples across Deep Neural Networks [53.04734042366312]
逆の例では、機械学習モデルを操作して誤った予測を行うことができます。
敵の例の転送可能性により、ターゲットモデルの詳細な知識を回避できるブラックボックス攻撃が可能となる。
本研究は, 対角移動可能性の展望を考察した。
論文 参考訳(メタデータ) (2023-10-26T17:45:26Z) - Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
我々の研究では、最大5つの攻撃アルゴリズムを3つのデータセットにわたって探索する。
対人摂動における人間の識別可能な特徴を同定する。
画素レベルのアノテーションを用いて、そのような特徴を抽出し、ターゲットモデルに妥協する能力を実証する。
論文 参考訳(メタデータ) (2023-09-28T22:31:29Z) - Mitigating Adversarial Vulnerability through Causal Parameter Estimation
by Adversarial Double Machine Learning [33.18197518590706]
視覚入力に対する故意に作られた摂動から導かれる敵の例は、ディープニューラルネットワークの決定プロセスに容易に害を与える可能性がある。
本稿では,adversarial Double Machine Learning (ADML) と呼ばれる因果的アプローチを導入する。
ADMLは, 対向的摂動の因果パラメータを直接推定し, 強靭性を損なう可能性のある負の効果を緩和することができる。
論文 参考訳(メタデータ) (2023-07-14T09:51:26Z) - ExploreADV: Towards exploratory attack for Neural Networks [0.33302293148249124]
ExploreADVは、地域的および非受容的な攻撃をモデル化できる汎用的で柔軟な敵攻撃システムである。
提案システムは,入力のサブリージョンに着目し,知覚不能な摂動を探索し,攻撃に対する画素/領域の脆弱性を理解するための柔軟性をユーザに提供する。
論文 参考訳(メタデータ) (2023-01-01T07:17:03Z) - Adversarial Robustness through the Lens of Causality [105.51753064807014]
ディープニューラルネットワークの敵対的脆弱性は、機械学習において大きな注目を集めている。
我々は、因果関係を敵対的脆弱性の軽減に組み込むことを提案する。
我々の手法は、敵の脆弱性を緩和するために因果性を利用する最初の試みと見なすことができる。
論文 参考訳(メタデータ) (2021-06-11T06:55:02Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
本稿では,敵対的事例に基づくニューラルネットワークモデルを検討するためのビジュアルフレームワークを提案する。
これらの要素を観察することで、モデル内の悪用領域を素早く特定できることを示す。
論文 参考訳(メタデータ) (2021-03-18T13:04:21Z) - A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack
and Learning [122.49765136434353]
本稿では,HMCAM (Acumulated Momentum) を用いたハミルトニアンモンテカルロ法を提案する。
また, 対数的対数的対数的学習(Contrastive Adversarial Training, CAT)と呼ばれる新たな生成法を提案し, 対数的例の平衡分布にアプローチする。
いくつかの自然画像データセットと実用システムに関する定量的および定性的な解析により、提案アルゴリズムの優位性が確認された。
論文 参考訳(メタデータ) (2020-10-15T16:07:26Z) - Transferable Perturbations of Deep Feature Distributions [102.94094966908916]
本研究は,クラスワイドおよび層ワイドな特徴分布のモデリングと利用に基づく新たな敵攻撃を提案する。
我々は、未定義の画像ネットモデルに対して、最先端のブラックボックス転送に基づく攻撃結果を得る。
論文 参考訳(メタデータ) (2020-04-27T00:32:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。