Provably Efficient Interactive-Grounded Learning with Personalized Reward
- URL: http://arxiv.org/abs/2405.20677v1
- Date: Fri, 31 May 2024 08:21:09 GMT
- Title: Provably Efficient Interactive-Grounded Learning with Personalized Reward
- Authors: Mengxiao Zhang, Yuheng Zhang, Haipeng Luo, Paul Mineiro,
- Abstract summary: Interactive-Grounded Learning (IGL) is a powerful framework in which a learner aims at maximizing unobservable rewards.
We provide the first provably efficient algorithms with sublinear regret under realizability.
We propose two algorithms, one based on explore-then-exploit and the other based on inverse-gap weighting.
- Score: 44.64476717773815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Interactive-Grounded Learning (IGL) [Xie et al., 2021] is a powerful framework in which a learner aims at maximizing unobservable rewards through interacting with an environment and observing reward-dependent feedback on the taken actions. To deal with personalized rewards that are ubiquitous in applications such as recommendation systems, Maghakian et al. [2022] study a version of IGL with context-dependent feedback, but their algorithm does not come with theoretical guarantees. In this work, we consider the same problem and provide the first provably efficient algorithms with sublinear regret under realizability. Our analysis reveals that the step-function estimator of prior work can deviate uncontrollably due to finite-sample effects. Our solution is a novel Lipschitz reward estimator which underestimates the true reward and enjoys favorable generalization performances. Building on this estimator, we propose two algorithms, one based on explore-then-exploit and the other based on inverse-gap weighting. We apply IGL to learning from image feedback and learning from text feedback, which are reward-free settings that arise in practice. Experimental results showcase the importance of using our Lipschitz reward estimator and the overall effectiveness of our algorithms.
Related papers
- A Unified Linear Programming Framework for Offline Reward Learning from Human Demonstrations and Feedback [6.578074497549894]
Inverse Reinforcement Learning (IRL) and Reinforcement Learning from Human Feedback (RLHF) are pivotal methodologies in reward learning.
This paper introduces a novel linear programming (LP) framework tailored for offline reward learning.
arXiv Detail & Related papers (2024-05-20T23:59:26Z) - Neural Active Learning Beyond Bandits [69.99592173038903]
We study both stream-based and pool-based active learning with neural network approximations.
We propose two algorithms based on the newly designed exploitation and exploration neural networks for stream-based and pool-based active learning.
arXiv Detail & Related papers (2024-04-18T21:52:14Z) - REBEL: A Regularization-Based Solution for Reward Overoptimization in Robotic Reinforcement Learning from Human Feedback [61.54791065013767]
A misalignment between the reward function and user intentions, values, or social norms can be catastrophic in the real world.
Current methods to mitigate this misalignment work by learning reward functions from human preferences.
We propose a novel concept of reward regularization within the robotic RLHF framework.
arXiv Detail & Related papers (2023-12-22T04:56:37Z) - Behavior Alignment via Reward Function Optimization [23.92721220310242]
We introduce a new framework that integrates auxiliary rewards reflecting a designer's domain knowledge with the environment's primary rewards.
We evaluate our method's efficacy on a diverse set of tasks, from small-scale experiments to high-dimensional control challenges.
arXiv Detail & Related papers (2023-10-29T13:45:07Z) - Improved Regret for Efficient Online Reinforcement Learning with Linear
Function Approximation [69.0695698566235]
We study reinforcement learning with linear function approximation and adversarially changing cost functions.
We present a computationally efficient policy optimization algorithm for the challenging general setting of unknown dynamics and bandit feedback.
arXiv Detail & Related papers (2023-01-30T17:26:39Z) - Basis for Intentions: Efficient Inverse Reinforcement Learning using
Past Experience [89.30876995059168]
inverse reinforcement learning (IRL) -- inferring the reward function of an agent from observing its behavior.
This paper addresses the problem of IRL -- inferring the reward function of an agent from observing its behavior.
arXiv Detail & Related papers (2022-08-09T17:29:49Z) - Interaction-Grounded Learning with Action-inclusive Feedback [46.29513917377202]
We create an algorithm and analysis which allows IGL to work even when the feedback vector contains the action, encoded in any fashion.
We provide theoretical guarantees and large-scale experiments based on supervised datasets to demonstrate the effectiveness of the new approach.
arXiv Detail & Related papers (2022-06-16T17:59:10Z) - Learning from an Exploring Demonstrator: Optimal Reward Estimation for
Bandits [36.37578212532926]
We introduce the "inverse bandit" problem of estimating the rewards of a multi-armed bandit instance.
Existing approaches to the related problem of inverse reinforcement learning assume the execution of an optimal policy.
We develop simple and efficient reward estimation procedures for demonstrations within a class of upper-confidence-based algorithms.
arXiv Detail & Related papers (2021-06-28T17:37:49Z) - Provably Efficient Reward-Agnostic Navigation with Linear Value
Iteration [143.43658264904863]
We show how iteration under a more standard notion of low inherent Bellman error, typically employed in least-square value-style algorithms, can provide strong PAC guarantees on learning a near optimal value function.
We present a computationally tractable algorithm for the reward-free setting and show how it can be used to learn a near optimal policy for any (linear) reward function.
arXiv Detail & Related papers (2020-08-18T04:34:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.