論文の概要: No Free Lunch Theorem for Privacy-Preserving LLM Inference
- arxiv url: http://arxiv.org/abs/2405.20681v1
- Date: Fri, 31 May 2024 08:22:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 15:07:03.106719
- Title: No Free Lunch Theorem for Privacy-Preserving LLM Inference
- Title(参考訳): プライバシ保護LDM推論のための自由ランチ理論
- Authors: Xiaojin Zhang, Yulin Fei, Yan Kang, Wei Chen, Lixin Fan, Hai Jin, Qiang Yang,
- Abstract要約: 本研究では,プライバシ保護型大規模言語モデル(LLM)を推定するためのフレームワークを開発する。
プライバシー保護とユーティリティの相互作用を調べるための、しっかりとした理論的基盤を築いている。
- 参考スコア(独自算出の注目度): 30.554456047738295
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Individuals and businesses have been significantly benefited by Large Language Models (LLMs) including PaLM, Gemini and ChatGPT in various ways. For example, LLMs enhance productivity, reduce costs, and enable us to focus on more valuable tasks. Furthermore, LLMs possess the capacity to sift through extensive datasets, uncover underlying patterns, and furnish critical insights that propel the frontiers of technology and science. However, LLMs also pose privacy concerns. Users' interactions with LLMs may expose their sensitive personal or company information. A lack of robust privacy safeguards and legal frameworks could permit the unwarranted intrusion or improper handling of individual data, thereby risking infringements of privacy and the theft of personal identities. To ensure privacy, it is essential to minimize the dependency between shared prompts and private information. Various randomization approaches have been proposed to protect prompts' privacy, but they may incur utility loss compared to unprotected LLMs prompting. Therefore, it is essential to evaluate the balance between the risk of privacy leakage and loss of utility when conducting effective protection mechanisms. The current study develops a framework for inferring privacy-protected Large Language Models (LLMs) and lays down a solid theoretical basis for examining the interplay between privacy preservation and utility. The core insight is encapsulated within a theorem that is called as the NFL (abbreviation of the word No-Free-Lunch) Theorem.
- Abstract(参考訳): 個人やビジネスは、PaLM、Gemini、ChatGPTを含む大規模言語モデル(LLM)によって、様々な面で大きな恩恵を受けている。
例えば、LLMは生産性を高め、コストを削減し、より価値のあるタスクに集中できるようにします。
さらに、LLMは広範なデータセットを探索し、基礎となるパターンを明らかにし、技術と科学のフロンティアを広める重要な洞察を与える能力を持っている。
しかし、LSMはプライバシーにも懸念を抱いている。
LLMとのユーザインタラクションは、機密性の高い個人情報や企業情報を公開する可能性がある。
堅牢なプライバシー保護と法的枠組みの欠如は、個人データの不正な侵入や不正な扱いを許す可能性があるため、プライバシーの侵害や個人情報の盗難を危険にさらす可能性がある。
プライバシーを確保するためには、共有プロンプトと個人情報間の依存関係を最小限にすることが不可欠である。
プロンプトのプライバシを保護するために様々なランダム化手法が提案されているが、非プロンプトLLMのプロンプトに比べて実用上の損失が生じる可能性がある。
したがって、効果的な保護機構を実行する際には、プライバシリークのリスクとユーティリティの損失のバランスを評価することが不可欠である。
本研究は,プライバシ保護された大規模言語モデル(LLM)を推定するためのフレームワークを開発し,プライバシ保護とユーティリティの相互作用を調べるための理論的根拠を定めている。
中心となる洞察はNFL定理(No-Free-Lunch)と呼ばれる定理にカプセル化される。
関連論文リスト
- PrivacyLens: Evaluating Privacy Norm Awareness of Language Models in Action [54.11479432110771]
PrivacyLensは、プライバシに敏感な種子を表現的なヴィグネットに拡張し、さらにエージェントの軌跡に拡張するために設計された新しいフレームワークである。
プライバシの文献とクラウドソーシングされたシードに基づいて、プライバシの規範のコレクションをインスタンス化する。
GPT-4やLlama-3-70Bのような最先端のLMは、プライバシー強化の指示が出されたとしても、機密情報を25.68%、38.69%のケースでリークしている。
論文 参考訳(メタデータ) (2024-08-29T17:58:38Z) - LLM-PBE: Assessing Data Privacy in Large Language Models [111.58198436835036]
大規模言語モデル(LLM)は多くのドメインに不可欠なものとなり、データ管理、マイニング、分析におけるアプリケーションを大幅に進歩させた。
この問題の批判的な性質にもかかわらず、LLMにおけるデータプライバシのリスクを総合的に評価する文献は存在しない。
本稿では,LLMにおけるデータプライバシリスクの体系的評価を目的としたツールキットであるLLM-PBEを紹介する。
論文 参考訳(メタデータ) (2024-08-23T01:37:29Z) - GoldCoin: Grounding Large Language Models in Privacy Laws via Contextual Integrity Theory [44.297102658873726]
これまでの研究では、さまざまなプライバシー攻撃、防御、評価を狭義に定義されたパターンの中で探索することで、プライバシを研究する。
我々は,プライバシ違反を評価する司法法において,LLMを効果的に活用するための新しい枠組みであるGoldCoinを紹介した。
我々のフレームワークは、コンテキスト整合性の理論をブリッジとして活用し、関連するプライバシー法に基づく多数の合成シナリオを作成する。
論文 参考訳(メタデータ) (2024-06-17T02:27:32Z) - On Protecting the Data Privacy of Large Language Models (LLMs): A Survey [35.48984524483533]
LLM(Large Language Model)は、人間の言語を理解し、生成し、翻訳できる複雑な人工知能システムである。
LLMは大量のデータを処理して生成し、データプライバシを脅かす可能性がある。
論文 参考訳(メタデータ) (2024-03-08T08:47:48Z) - Can LLMs Keep a Secret? Testing Privacy Implications of Language Models via Contextual Integrity Theory [82.7042006247124]
私たちは、最も有能なAIモデルでさえ、人間がそれぞれ39%と57%の確率で、プライベートな情報を公開していることを示しています。
我々の研究は、推論と心の理論に基づいて、新しい推論時プライバシー保護アプローチを即時に探求する必要性を浮き彫りにしている。
論文 参考訳(メタデータ) (2023-10-27T04:15:30Z) - Privacy Preserving Large Language Models: ChatGPT Case Study Based Vision and Framework [6.828884629694705]
本稿では,LLMのプライバシ生成モデルであるPrivChatGPTという概念モデルを提案する。
PrivChatGPTは、データキュレーション/前処理中にユーザのプライバシを保護し、プライベートコンテキストの保存と大規模データのプライベートトレーニングプロセスという2つの主要コンポーネントから構成される。
論文 参考訳(メタデータ) (2023-10-19T06:55:13Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
大規模言語モデル(LLM)を対象とした現在のプライバシ攻撃を分析し、敵の想定能力に応じて分類する。
本稿では、これらのプライバシー攻撃に対抗するために開発された防衛戦略について概説する。
論文 参考訳(メタデータ) (2023-10-16T13:23:54Z) - Beyond Memorization: Violating Privacy Via Inference with Large Language Models [2.9373912230684565]
本稿では,テキストから個人属性を推測する事前学習言語モデルの能力に関する,最初の総合的研究について述べる。
以上の結果から,現在のLCMでは,従来は達成不可能な規模で個人データを推測することが可能であることが示唆された。
論文 参考訳(メタデータ) (2023-10-11T08:32:46Z) - PrivacyMind: Large Language Models Can Be Contextual Privacy Protection Learners [81.571305826793]
コンテキストプライバシ保護言語モデル(PrivacyMind)を紹介する。
我々の研究はモデル設計に関する理論的分析を提供し、様々な手法をベンチマークする。
特に、肯定的な例と否定的な例の両方による命令チューニングは、有望な方法である。
論文 参考訳(メタデータ) (2023-10-03T22:37:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。