論文の概要: i$^2$VAE: Interest Information Augmentation with Variational Regularizers for Cross-Domain Sequential Recommendation
- arxiv url: http://arxiv.org/abs/2405.20710v2
- Date: Thu, 29 May 2025 22:27:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 19:47:52.406154
- Title: i$^2$VAE: Interest Information Augmentation with Variational Regularizers for Cross-Domain Sequential Recommendation
- Title(参考訳): i$^2$VAE:クロスドメインシークエンシャルレコメンデーションのための変分正規化器による関心情報拡張
- Authors: Xuying Ning, Wujiang Xu, Tianxin Wei, Xiaolei Liu,
- Abstract要約: i$2$VAEは、情報ベースレギュレータによるユーザ関心学習を強化する変分オートエンコーダである。
実験により、i$2$VAEは最先端の手法より優れていることが示された。
- 参考スコア(独自算出の注目度): 5.300964409946611
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Cross-Domain Sequential Recommendation (CDSR) leverages user behaviors across multiple domains to mitigate data sparsity and cold-start challenges in Single-Domain Sequential Recommendation. Existing methods primarily rely on shared users (overlapping users) to learn transferable interest representations. However, these approaches have limited information propagation, benefiting mainly overlapping users and those with rich interaction histories while neglecting non-overlapping (cold-start) and long-tailed users, who constitute the majority in real-world scenarios. To address this issue, we propose i$^2$VAE, a novel variational autoencoder (VAE)-based framework that enhances user interest learning with mutual information-based regularizers. i$^2$VAE improves recommendations for cold-start and long-tailed users while maintaining strong performance across all user groups. Specifically, cross-domain and disentangling regularizers extract transferable features for cold-start users, while a pseudo-sequence generator synthesizes interactions for long-tailed users, refined by a denoising regularizer to filter noise and preserve meaningful interest signals. Extensive experiments demonstrate that i$^2$VAE outperforms state-of-the-art methods, underscoring its effectiveness in real-world CDSR applications.
- Abstract(参考訳): クロスドメインシークエンシャルレコメンデーション(CDSR)は、複数のドメインにわたるユーザの振る舞いを活用して、単一ドメインシークエンシャルレコメンデーションにおけるデータのスパーシリティとコールドスタートの課題を軽減する。
既存の手法は主に、転送可能な関心表現を学習するために共有ユーザ(重複ユーザ)に依存している。
しかし、これらのアプローチは情報伝達が限られており、主に重複するユーザやリッチなインタラクション履歴を持つユーザの恩恵を受けながら、重複しない(コールドスタート)ユーザや、現実世界のシナリオの大部分を構成する長い尾を持つユーザを無視する。
この問題に対処するため,情報ベースレギュレータを用いたユーザ関心学習を支援する,新しい変分オートエンコーダ(VAE)ベースのフレームワークi$2$VAEを提案する。
i$^2$VAEは、コールドスタートとロングテールのユーザに対するレコメンデーションを改善し、すべてのユーザグループで強力なパフォーマンスを維持している。
具体的には、クロスドメインおよびディエンタングレギュレータは、コールドスタートユーザのための転送可能な特徴を抽出し、擬似シーケンスジェネレータは、ノイズをフィルタリングし、有意義な興味信号を保持するために、デノナイズレギュレータによって洗練される長いテールユーザのためのインタラクションを合成する。
大規模な実験により、i$^2$VAEは最先端の手法よりも優れており、実世界のCDSR応用におけるその効果を裏付けている。
関連論文リスト
- Image Fusion for Cross-Domain Sequential Recommendation [20.37668418178215]
Cross-Domain Sequential Recommendationは、複数のドメインにわたる過去のインタラクションに基づいて、将来のユーザインタラクションを予測することを目的としている。
CDSRの鍵となる課題は、シーケンス内とシーケンス間の両方の相互作用を十分に活用することで、ドメイン間のユーザの好みを効果的に捉えることである。
本稿では、アイテム画像情報を組み込んで視覚的嗜好をよりよく捉えた画像融合(IFCDSR)を提案する。
論文 参考訳(メタデータ) (2024-12-31T02:44:38Z) - DisCo: Graph-Based Disentangled Contrastive Learning for Cold-Start Cross-Domain Recommendation [11.61586672399166]
クロスドメインレコメンデーション(CDR)が有望なソリューションとして登場した。
しかし、ソースドメインに類似した好みを持つユーザは、ターゲットドメインに対して異なる関心を示す可能性がある。
そこで本稿では,ユーザ意図の微粒化を捉えるために,グラフに基づく非交叉型コントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-19T16:20:42Z) - Exploring User Retrieval Integration towards Large Language Models for Cross-Domain Sequential Recommendation [66.72195610471624]
Cross-Domain Sequential Recommendationは、異なるドメイン間でユーザのシーケンシャルな好みをマイニングし、転送することを目的としている。
本稿では,ユーザ検索手法を探索し,CDSRの性能向上を目的とした URLLM という新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-06-05T09:19:54Z) - Mixed Attention Network for Cross-domain Sequential Recommendation [63.983590953727386]
ドメイン固有・クロスドメイン情報を抽出するために,ローカル・グローバル・アテンション・モジュールを用いた混在注意ネットワーク(MAN)を提案する。
2つの実世界のデータセットに対する実験結果から,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2023-11-14T16:07:16Z) - Towards Open-world Cross-Domain Sequential Recommendation: A Model-Agnostic Contrastive Denoising Approach [16.09514981871128]
クロスドメインシーケンシャルレコメンデーション(CDSR)は、従来のシーケンシャルレコメンデーション(SR)システムに存在するデータ空間の問題に対処することを目的としている。
現実世界のレコメンデーションシステムでは、CDSRシナリオは通常、疎い振る舞いを持つ長い尾を持つユーザーの大多数と、一つのドメインにしか存在しないコールドスタートユーザーで構成される。
論文 参考訳(メタデータ) (2023-11-08T15:33:06Z) - FedDCSR: Federated Cross-domain Sequential Recommendation via
Disentangled Representation Learning [17.497009723665116]
本稿では,不整合表現学習を用いたクロスドメインシーケンシャルレコメンデーションフレームワークであるFedDCSRを提案する。
本稿では,SRD(Inter-Intra Domain Sequence Expression Disentanglement)と呼ばれるアプローチを導入し,ユーザシークエンス機能をドメイン共有およびドメイン排他的特徴に分解する。
さらに、ユーザシーケンス上でデータ拡張を行うことで、よりリッチなドメイン排他的特徴を学習するためのドメイン内コントラッシブインフォマックス(CIM)戦略を設計する。
論文 参考訳(メタデータ) (2023-09-15T14:23:20Z) - Exploiting Graph Structured Cross-Domain Representation for Multi-Domain
Recommendation [71.45854187886088]
マルチドメインレコメンデータシステムは、クロスドメイン表現学習とポジティブな知識伝達の恩恵を受ける。
我々はMAGRecと呼ばれる手法のコンテキスト情報として時間的ドメイン内相互作用とドメイン間相互作用を用いる。
我々は、MAGRecが最先端の手法を一貫して上回る様々なシナリオで、公開データセットで実験を行う。
論文 参考訳(メタデータ) (2023-02-12T19:51:32Z) - DDGHM: Dual Dynamic Graph with Hybrid Metric Training for Cross-Domain
Sequential Recommendation [15.366783212837515]
Sequential Recommendation (SR) は、ユーザがアイテム間を移動する方法をモデル化することによって、ユーザの行動の進化パターンを特徴付ける。
この問題を解決するため、我々はクロスドメインシーケンスレコメンデーション(CDSR)に焦点を当てる。
本稿では,CDSR問題のための新しいフレームワークであるDDGHMを提案する。
論文 参考訳(メタデータ) (2022-09-21T07:53:06Z) - Diverse Preference Augmentation with Multiple Domains for Cold-start
Recommendations [92.47380209981348]
メタラーニングをベースとした多元的ドメインを用いた多元的推論拡張フレームワークを提案する。
我々は、疎結合の場合の過度な適合を扱うために、新しい関心領域において多様な評価を生成する。
これらの評価は、選好メタラーナーを学ぶためのメタトレーニング手順に導入され、優れた一般化能力が得られる。
論文 参考訳(メタデータ) (2022-04-01T10:10:50Z) - A cross-domain recommender system using deep coupled autoencoders [77.86290991564829]
クロスドメインレコメンデーションのために2つの新しい結合型オートエンコーダに基づくディープラーニング手法を提案する。
最初の方法は、ソースドメインとターゲットドメイン内のアイテムの固有表現を明らかにするために、一対のオートエンコーダを同時に学習することを目的としている。
第2の方法は,2つのオートエンコーダを用いてユーザとアイテム待ち行列を深く非線形に生成する,新たな共同正規化最適化問題に基づいて導出する。
論文 参考訳(メタデータ) (2021-12-08T15:14:26Z) - RecGURU: Adversarial Learning of Generalized User Representations for
Cross-Domain Recommendation [19.61356871656398]
ドメイン間のレコメンデーションは、従来のシーケンシャルなレコメンデーションシステムにおけるデータスパリティの問題を軽減するのに役立つ。
本稿では,ドメイン間のユーザ情報を逐次レコメンデーションに組み込んだ汎用ユーザ表現(GUR)を生成するためのRecGURUアルゴリズムフレームワークを提案する。
論文 参考訳(メタデータ) (2021-11-19T08:41:06Z) - Dual Metric Learning for Effective and Efficient Cross-Domain
Recommendations [85.6250759280292]
クロスドメインレコメンダーシステムは、消費者が異なるアプリケーションで有用なアイテムを識別するのを助けるためにますます価値があります。
既存のクロスドメインモデルは、通常、多くのオーバーラップユーザーを必要とするため、いくつかのアプリケーションでは取得が困難である。
本稿では,2つのドメイン間で情報を反復的に伝達する二元学習に基づく新しいクロスドメインレコメンデーションモデルを提案する。
論文 参考訳(メタデータ) (2021-04-17T09:18:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。