論文の概要: Popularity-Aware Alignment and Contrast for Mitigating Popularity Bias
- arxiv url: http://arxiv.org/abs/2405.20718v2
- Date: Tue, 11 Jun 2024 09:29:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 21:33:54.114471
- Title: Popularity-Aware Alignment and Contrast for Mitigating Popularity Bias
- Title(参考訳): 人気バイアスの緩和のためのアライメントとコントラスト
- Authors: Miaomiao Cai, Lei Chen, Yifan Wang, Haoyue Bai, Peijie Sun, Le Wu, Min Zhang, Meng Wang,
- Abstract要約: 協調フィルタリング(CF)は通常、現実のデータセットにおけるアイテムの不均一な分布のため、人気バイアスの課題に悩まされる。
このバイアスは、人気アイテムと不人気アイテムの間にかなりの精度のギャップをもたらす。
本稿では,2つの課題に対処するために,PAAC(Popularity-Aware Alignment and Contrast)を提案する。
- 参考スコア(独自算出の注目度): 34.006766098392525
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Collaborative Filtering (CF) typically suffers from the significant challenge of popularity bias due to the uneven distribution of items in real-world datasets. This bias leads to a significant accuracy gap between popular and unpopular items. It not only hinders accurate user preference understanding but also exacerbates the Matthew effect in recommendation systems. To alleviate popularity bias, existing efforts focus on emphasizing unpopular items or separating the correlation between item representations and their popularity. Despite the effectiveness, existing works still face two persistent challenges: (1) how to extract common supervision signals from popular items to improve the unpopular item representations, and (2) how to alleviate the representation separation caused by popularity bias. In this work, we conduct an empirical analysis of popularity bias and propose Popularity-Aware Alignment and Contrast (PAAC) to address two challenges. Specifically, we use the common supervisory signals modeled in popular item representations and propose a novel popularity-aware supervised alignment module to learn unpopular item representations. Additionally, we suggest re-weighting the contrastive learning loss to mitigate the representation separation from a popularity-centric perspective. Finally, we validate the effectiveness and rationale of PAAC in mitigating popularity bias through extensive experiments on three real-world datasets. Our code is available at https://github.com/miaomiao-cai2/KDD2024-PAAC.
- Abstract(参考訳): 協調フィルタリング(CF)は一般的に、現実のデータセットにおけるアイテムの不均一な分布のため、人気バイアスの重大な問題に悩まされる。
このバイアスは、人気アイテムと不人気アイテムの間にかなりの精度のギャップをもたらす。
ユーザの好みの正確な理解を妨げるだけでなく、リコメンデーションシステムにおけるMatthew効果を悪化させる。
人気バイアスを軽減するため、既存の取り組みは不人気アイテムの強調や、アイテム表現と人気との相関関係の分離に重点を置いている。
効果にもかかわらず,既存の作品では,(1)人気項目からの共通監視信号を抽出し,不人気項目の表現を改善する方法,(2)人気バイアスによる表現分離を緩和する方法の2つの課題に直面している。
本研究では,人気バイアスの実証分析を行い,2つの課題に対処するために,大衆意識アライメントとコントラスト(PAAC)を提案する。
具体的には、一般的なアイテム表現でモデル化された共通スーパーバイザリー信号を使用し、不人気なアイテム表現を学習するために、新しい人気を意識した教師付きアライメントモジュールを提案する。
さらに,コントラスト学習の損失を再重み付けすることで,表現の分離を人気中心の視点から緩和することを提案する。
最後に,3つの実世界のデータセットに対する広範な実験を通じて,人気バイアスを緩和するPAACの有効性と理論的根拠を検証する。
私たちのコードはhttps://github.com/miaomiao-cai2/KDD2024-PAACで公開されています。
関連論文リスト
- Large Language Models as Recommender Systems: A Study of Popularity Bias [46.17953988777199]
人気アイテムは不釣り合いに推奨され、あまり人気がないが、潜在的に関連のあるアイテムを誇張している。
近年,汎用大規模言語モデルのレコメンデーションシステムへの統合が進んでいる。
本研究は,LLMがレコメンデーションシステムにおける人気バイアスに寄与するか否かを検討する。
論文 参考訳(メタデータ) (2024-06-03T12:53:37Z) - Going Beyond Popularity and Positivity Bias: Correcting for Multifactorial Bias in Recommender Systems [74.47680026838128]
ユーザインタラクションデータとレコメンダシステム(RS)の2つの典型的なバイアスは、人気バイアスと肯定バイアスである。
項目と評価値の双方に影響される多因子選択バイアスについて検討する。
分散を低減し、最適化の堅牢性を向上させるため、スムースで交互に勾配降下する手法を提案する。
論文 参考訳(メタデータ) (2024-04-29T12:18:21Z) - Robust Collaborative Filtering to Popularity Distribution Shift [56.78171423428719]
本稿では,テストデータに仮定することなく,インタラクションワイドな人気ショートカットを定量化し,削減する,シンプルで効果的なデバイアス対策であるPopGoを提案する。
IDとOODの両方のテストセットにおいて、PopGoは最先端のデバイアス戦略よりも大幅に向上している。
論文 参考訳(メタデータ) (2023-10-16T04:20:52Z) - Test Time Embedding Normalization for Popularity Bias Mitigation [6.145760252113906]
人気バイアスはレコメンデーションシステムの分野で広く問題となっている。
本稿では,人気バイアスを軽減するための簡易かつ効果的な戦略として,'Test Time Embedding Normalization'を提案する。
論文 参考訳(メタデータ) (2023-08-22T08:57:44Z) - Causal Intervention for Fairness in Multi-behavior Recommendation [40.938727601434195]
異なるユーザ行動(例えば変換率)間の関係は、実際にはアイテムの品質を反映している、と我々は主張する。
本稿では,不公平な問題に対処するため,複数のユーザの行動を考慮した人気バイアスを軽減することを提案する。
論文 参考訳(メタデータ) (2022-09-10T04:21:25Z) - Reconciling the Quality vs Popularity Dichotomy in Online Cultural
Markets [62.146882023375746]
本研究では,現在普及している商品に偏りがある可能性のあるランキングアルゴリズムにより,品質基準を隠蔽した$N$アイテムをユーザに推奨する,理想化されたオンライン文化市場のモデルを提案する。
我々のゴールは、人気バイアスが高品質アイテムが低品質アイテムよりも人気になるのを防ぎ、品質と人気ランキングの間に望ましくないミスアライメントをもたらすという、よく知られた事実の根底にあるメカニズムをよりよく理解することである。
論文 参考訳(メタデータ) (2022-04-28T14:36:11Z) - Cross Pairwise Ranking for Unbiased Item Recommendation [57.71258289870123]
我々はCPR(Cross Pairwise Ranking)という新しい学習パラダイムを開発する。
CPRは、露出メカニズムを知らずに不偏の推奨を達成する。
理論的には、この方法が学習に対するユーザ/イテムの適合性の影響を相殺することを証明する。
論文 参考訳(メタデータ) (2022-04-26T09:20:27Z) - The Unfairness of Popularity Bias in Book Recommendation [0.0]
人気度バイアスとは、人気アイテムが頻繁に推奨されるのに対して、人気アイテムがほとんどあるいはまったく推奨されないという問題を指す。
本稿では,有名な書籍分類データセットを分析し,人気商品に対する傾向に基づいて3つのユーザグループを定義した。
以上の結果から,ほとんどの最先端の推薦アルゴリズムは本分野における人気バイアスに悩まされていることが示唆された。
論文 参考訳(メタデータ) (2022-02-27T20:21:46Z) - An Adaptive Boosting Technique to Mitigate Popularity Bias in
Recommender System [1.5800354337004194]
一般的な精度尺度は人気項目に偏りがあり、非人気項目と比較して人気項目の精度が向上する。
本稿では,人気項目と非人気項目の誤りの差として,人気バイアスを測定する指標について考察する。
そこで本研究では,データ中の人気バイアスを低減させるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-13T03:04:55Z) - User-centered Evaluation of Popularity Bias in Recommender Systems [4.30484058393522]
推薦とランク付けシステムは人気バイアスに悩まされ、アルゴリズムは人気アイテムを数種類選んで、他の項目の大半を下書きする傾向にある。
本稿では,これらのアルゴリズムをユーザの視点から評価したい場合に,人気バイアス軽減度を評価するための既存の指標の限界を示す。
ユーザ中心の視点から,人気バイアスを緩和する効果的なアプローチを提案する。
論文 参考訳(メタデータ) (2021-03-10T22:12:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。