Diffusion Models Are Innate One-Step Generators
- URL: http://arxiv.org/abs/2405.20750v2
- Date: Fri, 7 Jun 2024 00:49:28 GMT
- Title: Diffusion Models Are Innate One-Step Generators
- Authors: Bowen Zheng, Tianming Yang,
- Abstract summary: Diffusion Models (DMs) can generate remarkable high-quality results.
DMs' layers are differentially activated at different time steps, leading to an inherent capability to generate images in a single step.
Our method achieves the SOTA results on CIFAR-10, AFHQv2 64x64 (FID 1.23), FFHQ 64x64 (FID 0.85) and ImageNet 64x64 (FID 1.16) with great efficiency.
- Score: 2.3359837623080613
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Diffusion Models (DMs) have achieved great success in image generation and other fields. By fine sampling through the trajectory defined by the SDE/ODE solver based on a well-trained score model, DMs can generate remarkable high-quality results. However, this precise sampling often requires multiple steps and is computationally demanding. To address this problem, instance-based distillation methods have been proposed to distill a one-step generator from a DM by having a simpler student model mimic a more complex teacher model. Yet, our research reveals an inherent limitations in these methods: the teacher model, with more steps and more parameters, occupies different local minima compared to the student model, leading to suboptimal performance when the student model attempts to replicate the teacher. To avoid this problem, we introduce a novel distributional distillation method, which uses an exclusive distributional loss. This method exceeds state-of-the-art (SOTA) results while requiring significantly fewer training images. Additionally, we show that DMs' layers are differentially activated at different time steps, leading to an inherent capability to generate images in a single step. Freezing most of the convolutional layers in a DM during distributional distillation enables this innate capability and leads to further performance improvements. Our method achieves the SOTA results on CIFAR-10 (FID 1.54), AFHQv2 64x64 (FID 1.23), FFHQ 64x64 (FID 0.85) and ImageNet 64x64 (FID 1.16) with great efficiency. Most of those results are obtained with only 5 million training images within 6 hours on 8 A100 GPUs.
Related papers
- Multi-student Diffusion Distillation for Better One-step Generators [29.751205880199855]
Multi-Student Distillation (MSD) is a framework to distill a conditional teacher diffusion model into multiple single-step generators.
MSD trains multiple distilled students, allowing smaller sizes and, therefore, faster inference.
Using 4 same-sized students, MSD sets a new state-of-the-art for one-step image generation: FID 1.20 on ImageNet-64x64 and 8.20 on zero-shot COCO2014.
arXiv Detail & Related papers (2024-10-30T17:54:56Z) - One-Step Diffusion Distillation through Score Implicit Matching [74.91234358410281]
We present Score Implicit Matching (SIM) a new approach to distilling pre-trained diffusion models into single-step generator models.
SIM shows strong empirical performances for one-step generators.
By applying SIM to a leading transformer-based diffusion model, we distill a single-step generator for text-to-image generation.
arXiv Detail & Related papers (2024-10-22T08:17:20Z) - EM Distillation for One-step Diffusion Models [65.57766773137068]
We propose a maximum likelihood-based approach that distills a diffusion model to a one-step generator model with minimal loss of quality.
We develop a reparametrized sampling scheme and a noise cancellation technique that together stabilizes the distillation process.
arXiv Detail & Related papers (2024-05-27T05:55:22Z) - Improved Distribution Matching Distillation for Fast Image Synthesis [54.72356560597428]
We introduce DMD2, a set of techniques that lift this limitation and improve DMD training.
First, we eliminate the regression loss and the need for expensive dataset construction.
Second, we integrate a GAN loss into the distillation procedure, discriminating between generated samples and real images.
arXiv Detail & Related papers (2024-05-23T17:59:49Z) - Directly Denoising Diffusion Models [6.109141407163027]
We present Directly Denoising Diffusion Model (DDDM), a simple and generic approach for generating realistic images with few-step sampling.
Our model achieves FID scores of 2.57 and 2.33 on CIFAR-10 in one-step and two-step sampling respectively, surpassing those obtained from GANs and distillation-based models.
For ImageNet 64x64, our approach stands as a competitive contender against leading models.
arXiv Detail & Related papers (2024-05-22T11:20:32Z) - One-Step Diffusion Distillation via Deep Equilibrium Models [64.11782639697883]
We introduce a simple yet effective means of distilling diffusion models directly from initial noise to the resulting image.
Our method enables fully offline training with just noise/image pairs from the diffusion model.
We demonstrate that the DEQ architecture is crucial to this capability, as GET matches a $5times$ larger ViT in terms of FID scores.
arXiv Detail & Related papers (2023-12-12T07:28:40Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
arXiv Detail & Related papers (2023-06-08T20:30:55Z) - On Distillation of Guided Diffusion Models [94.95228078141626]
We propose an approach to distilling classifier-free guided diffusion models into models that are fast to sample from.
For standard diffusion models trained on the pixelspace, our approach is able to generate images visually comparable to that of the original model.
For diffusion models trained on the latent-space (e.g., Stable Diffusion), our approach is able to generate high-fidelity images using as few as 1 to 4 denoising steps.
arXiv Detail & Related papers (2022-10-06T18:03:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.