Expanded Gating Ranges Improve Activation Functions
- URL: http://arxiv.org/abs/2405.20768v1
- Date: Sat, 25 May 2024 09:12:17 GMT
- Title: Expanded Gating Ranges Improve Activation Functions
- Authors: Allen Hao Huang,
- Abstract summary: We find that Expanded ArcTan Linear Unit (xATLU), Expanded GELU (xGELU), and Expanded SiLU (xSiLU) outperform existing activation functions within a transformer architecture.
We also show that expanded gating ranges show promising results in improving first-order Gated Linear Units (GLU)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Activation functions are core components of all deep learning architectures. Currently, the most popular activation functions are smooth ReLU variants like GELU and SiLU. These are self-gated activation functions where the range of the gating function is between zero and one. In this paper, we explore the viability of using arctan as a gating mechanism. A self-gated activation function that uses arctan as its gating function has a monotonically increasing first derivative. To make this activation function competitive, it is necessary to introduce a trainable parameter for every MLP block to expand the range of the gating function beyond zero and one. We find that this technique also improves existing self-gated activation functions. We conduct an empirical evaluation of Expanded ArcTan Linear Unit (xATLU), Expanded GELU (xGELU), and Expanded SiLU (xSiLU) and show that they outperform existing activation functions within a transformer architecture. Additionally, expanded gating ranges show promising results in improving first-order Gated Linear Units (GLU).
Related papers
- Deriving Activation Functions via Integration [0.0]
Activation functions play a crucial role in introducing non-linearities to deep neural networks.
We propose a novel approach to designing activation functions by focusing on their gradients and deriving the corresponding functions through integration.
Our work introduces the Integral of the Exponential Linear Unit (xIELU), a trainable piecewise activation function derived by integrating trainable affine transformations applied on the ELU activation function.
arXiv Detail & Related papers (2024-11-20T03:24:21Z) - Activation function optimization method: Learnable series linear units (LSLUs) [12.089173508371246]
We propose a series-based learnable ac-tivation function called LSLU (Learnable Series Linear Units)
This method simplifies deep learning networks while im-proving accuracy.
We evaluate LSLU's performance on CIFAR10, CIFAR100, and specific task datasets (e.g., Silkworm)
arXiv Detail & Related papers (2024-08-28T11:12:27Z) - Parametric Leaky Tanh: A New Hybrid Activation Function for Deep
Learning [0.0]
Activation functions (AFs) are crucial components of deep neural networks (DNNs)
We propose a novel hybrid activation function designed to combine the strengths of both the Tanh and Leaky ReLU activation functions.
PLanh is differentiable at all points and addresses the 'dying ReLU' problem by ensuring a non-zero gradient for negative inputs.
arXiv Detail & Related papers (2023-08-11T08:59:27Z) - Saturated Non-Monotonic Activation Functions [21.16866749728754]
We present three new activation functions built with our proposed method: SGELU, SSiLU, and SMish, which are composed of the negative portion of GELU, SiLU, and Mish, respectively, and ReLU's positive portion.
The results of image classification experiments on CIFAR-100 indicate that our proposed activation functions are highly effective and outperform state-of-the-art baselines across multiple deep learning architectures.
arXiv Detail & Related papers (2023-05-12T15:01:06Z) - Neural Estimation of Submodular Functions with Applications to
Differentiable Subset Selection [50.14730810124592]
Submodular functions and variants, through their ability to characterize diversity and coverage, have emerged as a key tool for data selection and summarization.
We propose FLEXSUBNET, a family of flexible neural models for both monotone and non-monotone submodular functions.
arXiv Detail & Related papers (2022-10-20T06:00:45Z) - Transformers with Learnable Activation Functions [63.98696070245065]
We use Rational Activation Function (RAF) to learn optimal activation functions during training according to input data.
RAF opens a new research direction for analyzing and interpreting pre-trained models according to the learned activation functions.
arXiv Detail & Related papers (2022-08-30T09:47:31Z) - Activation Functions: Dive into an optimal activation function [1.52292571922932]
We find an optimal activation function by defining it as a weighted sum of existing activation functions.
The study uses three activation functions, ReLU, tanh, and sin, over three popular image datasets.
arXiv Detail & Related papers (2022-02-24T12:44:11Z) - Graph-adaptive Rectified Linear Unit for Graph Neural Networks [64.92221119723048]
Graph Neural Networks (GNNs) have achieved remarkable success by extending traditional convolution to learning on non-Euclidean data.
We propose Graph-adaptive Rectified Linear Unit (GReLU) which is a new parametric activation function incorporating the neighborhood information in a novel and efficient way.
We conduct comprehensive experiments to show that our plug-and-play GReLU method is efficient and effective given different GNN backbones and various downstream tasks.
arXiv Detail & Related papers (2022-02-13T10:54:59Z) - Submodular + Concave [53.208470310734825]
It has been well established that first order optimization methods can converge to the maximal objective value of concave functions.
In this work, we initiate the determinant of the smooth functions convex body $$F(x) = G(x) +C(x)$.
This class of functions is an extension of both concave and continuous DR-submodular functions for which no guarantee is known.
arXiv Detail & Related papers (2021-06-09T01:59:55Z) - Continuous Submodular Function Maximization [91.17492610120324]
Continuous submodularity is a class of functions with a wide spectrum of applications.
We identify several applications of continuous submodular optimization, ranging from influence, MAP for inferences to inferences to field field.
arXiv Detail & Related papers (2020-06-24T04:37:31Z) - Gaussian Error Linear Units (GELUs) [58.195342948092964]
We propose a neural network activation function that weights inputs by their value, rather than gates by their sign.
We find performance improvements across all considered computer vision, natural language processing, and speech tasks.
arXiv Detail & Related papers (2016-06-27T19:20:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.