Gompertz Linear Units: Leveraging Asymmetry for Enhanced Learning Dynamics
- URL: http://arxiv.org/abs/2502.03654v1
- Date: Wed, 05 Feb 2025 22:32:22 GMT
- Title: Gompertz Linear Units: Leveraging Asymmetry for Enhanced Learning Dynamics
- Authors: Indrashis Das, Mahmoud Safari, Steven Adriaensen, Frank Hutter,
- Abstract summary: GoLU is a novel self-gated activation function defined as $mathrmGoLU(x) = x, mathrmGompertz(x)$, wheremathrmGompertz(x) = e-e-x$.
GoLU's superior performance relative to state-of-the-art activation functions, highlights GoLU as a robust alternative to existing activation functions.
- Score: 39.0860823332923
- License:
- Abstract: Activation functions are fundamental elements of deep learning architectures as they significantly influence training dynamics. ReLU, while widely used, is prone to the dying neuron problem, which has been mitigated by variants such as LeakyReLU, PReLU, and ELU that better handle negative neuron outputs. Recently, self-gated activations like GELU and Swish have emerged as state-of-the-art alternatives, leveraging their smoothness to ensure stable gradient flow and prevent neuron inactivity. In this work, we introduce the Gompertz Linear Unit (GoLU), a novel self-gated activation function defined as $\mathrm{GoLU}(x) = x \, \mathrm{Gompertz}(x)$, where $\mathrm{Gompertz}(x) = e^{-e^{-x}}$. The GoLU activation leverages the asymmetry in the Gompertz function to reduce variance in the latent space more effectively compared to GELU and Swish, while preserving robust gradient flow. Extensive experiments across diverse tasks, including Image Classification, Language Modeling, Semantic Segmentation, Object Detection, Instance Segmentation, and Diffusion, highlight GoLU's superior performance relative to state-of-the-art activation functions, establishing GoLU as a robust alternative to existing activation functions.
Related papers
- Activation function optimization method: Learnable series linear units (LSLUs) [12.089173508371246]
We propose a series-based learnable ac-tivation function called LSLU (Learnable Series Linear Units)
This method simplifies deep learning networks while im-proving accuracy.
We evaluate LSLU's performance on CIFAR10, CIFAR100, and specific task datasets (e.g., Silkworm)
arXiv Detail & Related papers (2024-08-28T11:12:27Z) - Expanded Gating Ranges Improve Activation Functions [0.0]
We find that Expanded ArcTan Linear Unit (xATLU), Expanded GELU (xGELU), and Expanded SiLU (xSiLU) outperform existing activation functions within a transformer architecture.
We also show that expanded gating ranges show promising results in improving first-order Gated Linear Units (GLU)
arXiv Detail & Related papers (2024-05-25T09:12:17Z) - ReLU$^2$ Wins: Discovering Efficient Activation Functions for Sparse
LLMs [91.31204876440765]
We introduce a general method that defines neuron activation through neuron output magnitudes and a tailored magnitude threshold.
To find the most efficient activation function for sparse computation, we propose a systematic framework.
We conduct thorough experiments on LLMs utilizing different activation functions, including ReLU, SwiGLU, ReGLU, and ReLU$2$.
arXiv Detail & Related papers (2024-02-06T08:45:51Z) - Saturated Non-Monotonic Activation Functions [21.16866749728754]
We present three new activation functions built with our proposed method: SGELU, SSiLU, and SMish, which are composed of the negative portion of GELU, SiLU, and Mish, respectively, and ReLU's positive portion.
The results of image classification experiments on CIFAR-100 indicate that our proposed activation functions are highly effective and outperform state-of-the-art baselines across multiple deep learning architectures.
arXiv Detail & Related papers (2023-05-12T15:01:06Z) - TaLU: A Hybrid Activation Function Combining Tanh and Rectified Linear
Unit to Enhance Neural Networks [1.3477333339913569]
TaLU is a modified activation function combining Tanh and ReLU, which mitigates the dying gradient problem of ReLU.
Deep learning model with the proposed activation function was tested on MNIST and CIFAR-10.
arXiv Detail & Related papers (2023-05-08T01:13:59Z) - Neural Estimation of Submodular Functions with Applications to
Differentiable Subset Selection [50.14730810124592]
Submodular functions and variants, through their ability to characterize diversity and coverage, have emerged as a key tool for data selection and summarization.
We propose FLEXSUBNET, a family of flexible neural models for both monotone and non-monotone submodular functions.
arXiv Detail & Related papers (2022-10-20T06:00:45Z) - Graph-adaptive Rectified Linear Unit for Graph Neural Networks [64.92221119723048]
Graph Neural Networks (GNNs) have achieved remarkable success by extending traditional convolution to learning on non-Euclidean data.
We propose Graph-adaptive Rectified Linear Unit (GReLU) which is a new parametric activation function incorporating the neighborhood information in a novel and efficient way.
We conduct comprehensive experiments to show that our plug-and-play GReLU method is efficient and effective given different GNN backbones and various downstream tasks.
arXiv Detail & Related papers (2022-02-13T10:54:59Z) - Growing Cosine Unit: A Novel Oscillatory Activation Function That Can
Speedup Training and Reduce Parameters in Convolutional Neural Networks [0.1529342790344802]
Convolution neural networks have been successful in solving many socially important and economically significant problems.
Key discovery that made training deep networks feasible was the adoption of the Rectified Linear Unit (ReLU) activation function.
New activation function C(z) = z cos z outperforms Sigmoids, Swish, Mish and ReLU on a variety of architectures.
arXiv Detail & Related papers (2021-08-30T01:07:05Z) - Comparisons among different stochastic selection of activation layers
for convolutional neural networks for healthcare [77.99636165307996]
We classify biomedical images using ensembles of neural networks.
We select our activations among the following ones: ReLU, leaky ReLU, Parametric ReLU, ELU, Adaptive Piecewice Linear Unit, S-Shaped ReLU, Swish, Mish, Mexican Linear Unit, Parametric Deformable Linear Unit, Soft Root Sign.
arXiv Detail & Related papers (2020-11-24T01:53:39Z) - Gaussian Error Linear Units (GELUs) [58.195342948092964]
We propose a neural network activation function that weights inputs by their value, rather than gates by their sign.
We find performance improvements across all considered computer vision, natural language processing, and speech tasks.
arXiv Detail & Related papers (2016-06-27T19:20:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.