論文の概要: Reinforcement Learning for Sociohydrology
- arxiv url: http://arxiv.org/abs/2405.20772v1
- Date: Fri, 31 May 2024 13:28:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 14:37:39.509467
- Title: Reinforcement Learning for Sociohydrology
- Title(参考訳): 社会水理学の強化学習
- Authors: Tirthankar Roy, Shivendra Srivastava, Beichen Zhang,
- Abstract要約: 本稿では,強化学習が社会水理問題の解決に有効な枠組みを提供する方法について論じる。
本稿では,ランオフ低減問題におけるRLの実装を実証するための簡単なケーススタディを提案する。
- 参考スコア(独自算出の注目度): 8.68732851119558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this study, we discuss how reinforcement learning (RL) provides an effective and efficient framework for solving sociohydrology problems. The efficacy of RL for these types of problems is evident because of its ability to update policies in an iterative manner - something that is also foundational to sociohydrology, where we are interested in representing the co-evolution of human-water interactions. We present a simple case study to demonstrate the implementation of RL in a problem of runoff reduction through management decisions related to changes in land-use land-cover (LULC). We then discuss the benefits of RL for these types of problems and share our perspectives on the future research directions in this area.
- Abstract(参考訳): 本研究では,強化学習(RL)が社会水理問題の解決に有効かつ効率的な枠組みを提供する方法について論じる。
この種の問題に対するRLの有効性は、政策を反復的に更新する能力から明らかである。
本稿では,土地利用土地被覆(LULC)の変更に伴う経営決定を通じての流出削減問題において,RLの実装を実証するための簡単なケーススタディを提案する。
次に,これらの問題に対するRLの利点について考察し,今後の研究方向性について考察する。
関連論文リスト
- A Survey On Enhancing Reinforcement Learning in Complex Environments: Insights from Human and LLM Feedback [1.0359008237358598]
本稿では、まず、人間やLSMの補助に焦点をあて、これらの実体が最適な行動の促進と学習の迅速化のためにRLエージェントと協調する方法について検討し、また、大きな観測空間によって特徴づけられる環境の複雑さに対処する研究論文を探索する。
論文 参考訳(メタデータ) (2024-11-20T15:52:03Z) - Towards Sample-Efficiency and Generalization of Transfer and Inverse Reinforcement Learning: A Comprehensive Literature Review [50.67937325077047]
本稿では,転送および逆強化学習(T-IRL)によるRLアルゴリズムのサンプル効率と一般化を実現するための総合的なレビューを行う。
以上の結果から,最近の研究成果の大部分は,人間のループとシム・トゥ・リアル戦略を活用することで,上記の課題に対処していることが示唆された。
IRL構造の下では、経験の少ない移行と、そのようなフレームワークのマルチエージェントおよびマルチインテンション問題への拡張を必要とするトレーニングスキームが近年研究者の優先事項となっている。
論文 参考訳(メタデータ) (2024-11-15T15:18:57Z) - Learning by Doing: An Online Causal Reinforcement Learning Framework
with Causal-Aware Policy [40.33036146207819]
我々は、図形因果モデルを用いて、状態の生成過程を明示的にモデル化することを検討する。
我々は、環境のアクティブな介入学習とRL相互作用プロセスに更新する因果構造を定式化する。
論文 参考訳(メタデータ) (2024-02-07T14:09:34Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
本稿では,実世界の配水ネットワーク(WDN)のリアルタイム制御を強化するために,ポンプスケジューリング最適化問題に対処する。
我々の主な目的は、エネルギー消費と運用コストを削減しつつ、物理的な運用上の制約を遵守することである。
進化に基づくアルゴリズムや遺伝的アルゴリズムのような伝統的な最適化手法は、収束保証の欠如によってしばしば不足する。
論文 参考訳(メタデータ) (2023-10-13T21:26:16Z) - A Survey on Causal Reinforcement Learning [41.645270300009436]
本稿では、CRL(Causal Reinforcement Learning)の作業のレビュー、CRL手法のレビュー、RLへの因果性から潜在的な機能について検討する。
特に,既存のCRLアプローチを,因果関係に基づく情報が事前に与えられるか否かに応じて2つのカテゴリに分けた。
我々は、マルコフ決定プロセス(MDP)、部分観測マルコフ決定プロセス(POMDP)、マルチアーム帯域(MAB)、動的治療レジーム(DTR)など、様々なモデルの形式化の観点から、各カテゴリを解析する。
論文 参考訳(メタデータ) (2023-02-10T12:25:08Z) - Flexible Attention-Based Multi-Policy Fusion for Efficient Deep
Reinforcement Learning [78.31888150539258]
強化学習(RL)エージェントは、長い間、人間の学習の効率にアプローチしようとしてきた。
RLにおける以前の研究は、エージェントがサンプル効率を改善するために外部知識ポリシーを取り入れていた。
我々は,複数の知識ポリシーを融合させたRLパラダイムであるKGRL(Knowledge-Grounded RL)について述べる。
論文 参考訳(メタデータ) (2022-10-07T17:56:57Z) - Reinforcement Learning in Modern Biostatistics: Constructing Optimal Adaptive Interventions [6.9295094033607825]
強化学習(RL)は、健康関連意思決定問題において顕著な地位を獲得した。
しかし、実際の応用はまだ限られており、その可能性はまだ実現されていない。
論文 参考訳(メタデータ) (2022-03-04T23:14:02Z) - Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation [78.17108227614928]
本研究では,水文ナビゲーションに着目した安全強化学習のためのベンチマーク環境を提案する。
価値に基づく政策段階の深層強化学習(DRL)について考察する。
また,学習したモデルの振る舞いを所望の特性の集合上で検証する検証戦略を提案する。
論文 参考訳(メタデータ) (2021-12-16T16:53:56Z) - Deep Reinforcement Learning for Conservation Decisions [0.0]
我々は、最も困難な保全決定問題に対処するために、_reinforcement learning_(RL)として知られる機械学習の有望なコーナーの可能性を示す。
RLは明らかに、エージェントを設計することに焦点を当てている。
動的で不確実な環境と相互作用します
注釈付きコードを持つ4つの付録は、これらのアプローチを採用し、評価し、拡張しようとしている研究者に、具体的な紹介を提供する。
論文 参考訳(メタデータ) (2021-06-15T16:32:48Z) - Combining Pessimism with Optimism for Robust and Efficient Model-Based
Deep Reinforcement Learning [56.17667147101263]
実世界のタスクでは、強化学習エージェントはトレーニング中に存在しない状況に遭遇する。
信頼性を確保するため、RLエージェントは最悪の状況に対して堅牢性を示す必要がある。
本稿では,Robust Hallucinated Upper-Confidence RL (RH-UCRL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-03-18T16:50:17Z) - Causal Inference Q-Network: Toward Resilient Reinforcement Learning [57.96312207429202]
観測干渉を有する弾力性のあるDRLフレームワークを検討する。
本稿では、因果推論Q-network (CIQ) と呼ばれる因果推論に基づくDRLアルゴリズムを提案する。
実験の結果,提案手法は観測干渉に対して高い性能と高反発性を実現することができた。
論文 参考訳(メタデータ) (2021-02-18T23:50:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。