論文の概要: Visual-RolePlay: Universal Jailbreak Attack on MultiModal Large Language Models via Role-playing Image Character
- arxiv url: http://arxiv.org/abs/2405.20773v2
- Date: Wed, 12 Jun 2024 07:13:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-13 21:55:11.020656
- Title: Visual-RolePlay: Universal Jailbreak Attack on MultiModal Large Language Models via Role-playing Image Character
- Title(参考訳): Visual-RolePlay:ロールプレイングイメージキャラクタによる多モード大規模言語モデルに対するユニバーサルジェイルブレイク攻撃
- Authors: Siyuan Ma, Weidi Luo, Yu Wang, Xiaogeng Liu,
- Abstract要約: 本稿では,MLLMジェイルブレイク攻撃に対する視覚ロールプレイ(VRP)と呼ばれる新しい効果的手法を提案する。
VRPは、リスクの高い文字の詳細な記述を生成し、その記述に基づいて対応する画像を生成する。
良質なロールプレイインストラクションテキストと組み合わせると、これらのハイリスクなキャラクターイメージはMLLMを効果的に誤解して悪意ある応答を発生させる。
- 参考スコア(独自算出の注目度): 5.927633974815329
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the advent and widespread deployment of Multimodal Large Language Models (MLLMs), ensuring their safety has become increasingly critical. To achieve this objective, it requires us to proactively discover the vulnerability of MLLMs by exploring the attack methods. Thus, structure-based jailbreak attacks, where harmful semantic content is embedded within images, have been proposed to mislead the models. However, previous structure-based jailbreak methods mainly focus on transforming the format of malicious queries, such as converting harmful content into images through typography, which lacks sufficient jailbreak effectiveness and generalizability. To address these limitations, we first introduce the concept of "Role-play" into MLLM jailbreak attacks and propose a novel and effective method called Visual Role-play (VRP). Specifically, VRP leverages Large Language Models to generate detailed descriptions of high-risk characters and create corresponding images based on the descriptions. When paired with benign role-play instruction texts, these high-risk character images effectively mislead MLLMs into generating malicious responses by enacting characters with negative attributes. We further extend our VRP method into a universal setup to demonstrate its generalizability. Extensive experiments on popular benchmarks show that VRP outperforms the strongest baseline, Query relevant and FigStep, by an average Attack Success Rate (ASR) margin of 14.3% across all models.
- Abstract(参考訳): MLLM(Multimodal Large Language Models)の出現と普及に伴い、安全性の確保がますます重要になっている。
この目的を達成するためには,攻撃手法を探索することでMLLMの脆弱性を積極的に発見する必要がある。
このように、有害なセマンティックコンテンツが画像内に埋め込まれる構造ベースのジェイルブレイク攻撃は、モデルを誤解させるために提案されている。
しかし、従来の構造に基づくジェイルブレイク手法は主に、有害なコンテンツをタイポグラフィーによって画像に変換するような悪意あるクエリの形式を変換することに焦点を当てており、ジェイルブレイクの有効性と一般化性に欠ける。
これらの制約に対処するため、まずMLLMジェイルブレイク攻撃に「ロールプレイ」の概念を導入し、視覚ロールプレイ(VRP)と呼ばれる新しい効果的手法を提案する。
特に、VRPはLarge Language Modelsを活用して、リスクの高い文字の詳細な記述を生成し、その記述に基づいて対応する画像を生成する。
良質なロールプレイインストラクションテキストと組み合わせると、これらのハイリスクな文字画像はMLLMを効果的に誤解させ、負の属性を持つ文字を付加することで悪意のある応答を発生させる。
一般化可能性を示すために,VRP法をさらに普遍的な設定に拡張する。
人気のあるベンチマークに関する大規模な実験によると、VRPは、すべてのモデルで平均14.3%のアタック成功率(ASR)で最強のベースラインであるQuery relevantとFigStepを上回っている。
関連論文リスト
- DROJ: A Prompt-Driven Attack against Large Language Models [0.0]
大規模言語モデル(LLM)は、様々な自然言語処理タスクにまたがる例外的な機能を示している。
大規模なアライメント努力にもかかわらず、LLMは相変わらず敵の脱獄攻撃を受けやすいままである。
我々はDROJ(Directed Rrepresentation Optimization Jailbreak)という新しいアプローチを導入する。
論文 参考訳(メタデータ) (2024-11-14T01:48:08Z) - IDEATOR: Jailbreaking Large Vision-Language Models Using Themselves [67.30731020715496]
ブラックボックスのジェイルブレイク攻撃に対して,悪意のある画像テキストペアを自動生成する新しいジェイルブレイク手法 IDEATOR を提案する。
IDEATORはVLMを使用して、ターゲットとなるJailbreakテキストを作成し、最先端の拡散モデルによって生成されたJailbreakイメージと組み合わせる。
平均5.34クエリでMiniGPT-4をジェイルブレイクし、LLaVA、InstructBLIP、Meta's Chameleonに転送すると82%、88%、75%という高い成功率を達成した。
論文 参考訳(メタデータ) (2024-10-29T07:15:56Z) - Prefix Guidance: A Steering Wheel for Large Language Models to Defend Against Jailbreak Attacks [27.11523234556414]
我々は,プリフィックスガイダンス(PG)という,プラグアンドプレイで容易に配置可能なジェイルブレイク防御フレームワークを提案する。
PGは、モデルの出力の最初の数個のトークンを直接設定することで、有害なプロンプトを特定するようモデルに誘導する。
3つのモデルと5つの攻撃方法におけるPGの有効性を実証する。
論文 参考訳(メタデータ) (2024-08-15T14:51:32Z) - Jailbreak Vision Language Models via Bi-Modal Adversarial Prompt [60.54666043358946]
本稿では,テキストと視覚のプロンプトを協調的に最適化することにより,ジェイルブレイクを実行するバイモーダル・アドバイサル・プロンプト・アタック(BAP)を提案する。
特に,大規模言語モデルを用いてジェイルブレイクの失敗を分析し,テキストのプロンプトを洗練させるために連鎖推論を採用する。
論文 参考訳(メタデータ) (2024-06-06T13:00:42Z) - White-box Multimodal Jailbreaks Against Large Vision-Language Models [61.97578116584653]
本稿では,テキストと画像のモダリティを併用して,大規模視覚言語モデルにおけるより広範な脆弱性のスペクトルを利用する,より包括的戦略を提案する。
本手法は,テキスト入力がない場合に,逆画像プレフィックスをランダムノイズから最適化し,有害な応答を多様に生成することから始める。
様々な有害な指示に対する肯定的な反応を誘発する確率を最大化するために、対向テキスト接頭辞を、対向画像接頭辞と統合し、共最適化する。
論文 参考訳(メタデータ) (2024-05-28T07:13:30Z) - Images are Achilles' Heel of Alignment: Exploiting Visual Vulnerabilities for Jailbreaking Multimodal Large Language Models [107.88745040504887]
マルチモーダル大言語モデル(MLLM)の無害アライメント問題について検討する。
そこで本研究では,テキスト入力における悪意のある意図の有害性を隠蔽し,増幅する,HADESという新しいジェイルブレイク手法を提案する。
実験の結果、HADESは既存のMLLMを効果的にジェイルブレイクし、LLaVA-1.5では90.26%、Gemini Pro Visionでは71.60%の攻撃成功率を達成した。
論文 参考訳(メタデータ) (2024-03-14T18:24:55Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
textbfAdaptive textbfShield Promptingを提案する。これは、MLLMを構造ベースのジェイルブレイク攻撃から守るための防御プロンプトで入力をプリペイドする。
我々の手法は、構造に基づくジェイルブレイク攻撃に対するMLLMの堅牢性を一貫して改善することができる。
論文 参考訳(メタデータ) (2024-03-14T15:57:13Z) - Jailbreaking Attack against Multimodal Large Language Model [69.52466793164618]
本稿では,マルチモーダル大規模言語モデル(MLLM)に対するジェイルブレイク攻撃に焦点を当てた。
imgJP (emphimage Jailbreaking Prompt) の探索手法を提案する。
提案手法は, 生成したimgJPをジェイルブレイクモデルに転送できるため, 強いモデル伝達性を示す。
論文 参考訳(メタデータ) (2024-02-04T01:29:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。