PGA-SciRE: Harnessing LLM on Data Augmentation for Enhancing Scientific Relation Extraction
- URL: http://arxiv.org/abs/2405.20787v1
- Date: Thu, 30 May 2024 13:07:54 GMT
- Title: PGA-SciRE: Harnessing LLM on Data Augmentation for Enhancing Scientific Relation Extraction
- Authors: Yang Zhou, Shimin Shan, Hongkui Wei, Zhehuan Zhao, Wenshuo Feng,
- Abstract summary: Relation Extraction (RE) aims at recognizing the relation between pairs of entities mentioned in a text.
We propose a framework called PGA for improving the performance of models for RE in the scientific domain.
- Score: 3.115124630982566
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Relation Extraction (RE) aims at recognizing the relation between pairs of entities mentioned in a text. Advances in LLMs have had a tremendous impact on NLP. In this work, we propose a textual data augmentation framework called PGA for improving the performance of models for RE in the scientific domain. The framework introduces two ways of data augmentation, utilizing a LLM to obtain pseudo-samples with the same sentence meaning but with different representations and forms by paraphrasing the original training set samples. As well as instructing LLM to generate sentences that implicitly contain information about the corresponding labels based on the relation and entity of the original training set samples. These two kinds of pseudo-samples participate in the training of the RE model together with the original dataset, respectively. The PGA framework in the experiment improves the F1 scores of the three mainstream models for RE within the scientific domain. Also, using a LLM to obtain samples can effectively reduce the cost of manually labeling data.
Related papers
- Generating Diverse Training Samples for Relation Extraction with Large Language Models [30.196619805354622]
We study how to effectively improve the diversity of the training samples generated with Large Language Models (LLMs) for Relation Extraction (RE)<n>Our experiments on commonly used RE datasets show that both attempts can improve the quality of the generated training data.
arXiv Detail & Related papers (2025-05-29T05:21:54Z) - FactCG: Enhancing Fact Checkers with Graph-Based Multi-Hop Data [13.108807408880645]
We propose a novel approach for synthetic data generation, CG2C, that leverages multi-hop reasoning on context graphs extracted from documents.
Our fact checker model, FactCG, demonstrates improved performance with more connected reasoning, using the same backbone models.
arXiv Detail & Related papers (2025-01-28T18:45:07Z) - Entropy Law: The Story Behind Data Compression and LLM Performance [115.70395740286422]
We find that model performance is negatively correlated to the compression ratio of training data, which usually yields a lower training loss.
Based on the findings of the entropy law, we propose a quite efficient and universal data selection method.
We also present an interesting application of entropy law that can detect potential performance risks at the beginning of model training.
arXiv Detail & Related papers (2024-07-09T08:14:29Z) - ITERTL: An Iterative Framework for Fine-tuning LLMs for RTL Code Generation [9.409062607311528]
Large language models (LLMs) have demonstrated excellent performance in understanding human instructions and generating code.
We introduce a simple yet effective iterative training paradigm named ITERTL.
We show the model trained through our proposed approach can compete with and even outperform the state-of-the-art (SOTA) open-source model.
arXiv Detail & Related papers (2024-06-28T01:44:57Z) - Through the Thicket: A Study of Number-Oriented LLMs derived from Random Forest Models [0.0]
Large Language Models (LLMs) have shown exceptional performance in text processing.
This paper proposes a novel approach to training LLMs using knowledge transfer from a random forest (RF) ensemble.
We generate outputs for fine-tuning, enhancing the model's ability to classify and explain its decisions.
arXiv Detail & Related papers (2024-06-07T13:31:51Z) - Recall, Retrieve and Reason: Towards Better In-Context Relation Extraction [11.535892987373947]
Relation extraction (RE) aims to identify relations between entities mentioned in texts.
Large language models (LLMs) have demonstrated impressive in-context learning abilities in various tasks.
LLMs suffer from poor performances compared to most supervised fine-tuned RE methods.
arXiv Detail & Related papers (2024-04-27T07:12:52Z) - Alpaca against Vicuna: Using LLMs to Uncover Memorization of LLMs [61.04246774006429]
We introduce a black-box prompt optimization method that uses an attacker LLM agent to uncover higher levels of memorization in a victim agent.
We observe that our instruction-based prompts generate outputs with 23.7% higher overlap with training data compared to the baseline prefix-suffix measurements.
Our findings show that instruction-tuned models can expose pre-training data as much as their base-models, if not more so, and using instructions proposed by other LLMs can open a new avenue of automated attacks.
arXiv Detail & Related papers (2024-03-05T19:32:01Z) - Unsupervised Information Refinement Training of Large Language Models for Retrieval-Augmented Generation [128.01050030936028]
We propose an information refinement training method named InFO-RAG.
InFO-RAG is low-cost and general across various tasks.
It improves the performance of LLaMA2 by an average of 9.39% relative points.
arXiv Detail & Related papers (2024-02-28T08:24:38Z) - ExaRanker-Open: Synthetic Explanation for IR using Open-Source LLMs [60.81649785463651]
We introduce ExaRanker-Open, where we adapt and explore the use of open-source language models to generate explanations.
Our findings reveal that incorporating explanations consistently enhances neural rankers, with benefits escalating as the LLM size increases.
arXiv Detail & Related papers (2024-02-09T11:23:14Z) - LLMaAA: Making Large Language Models as Active Annotators [32.57011151031332]
We propose LLMaAA, which takes large language models as annotators and puts them into an active learning loop to determine what to annotate efficiently.
We conduct experiments and analysis on two classic NLP tasks, named entity recognition and relation extraction.
With LLMaAA, task-specific models trained from LLM-generated labels can outperform the teacher within only hundreds of annotated examples.
arXiv Detail & Related papers (2023-10-30T14:54:15Z) - Revisiting Large Language Models as Zero-shot Relation Extractors [8.953462875381888]
Relation extraction (RE) consistently involves a certain degree of labeled or unlabeled data even if under zero-shot setting.
Recent studies have shown that large language models (LLMs) transfer well to new tasks out-of-the-box simply given a natural language prompt.
This work focuses on the study of exploring LLMs as zero-shot relation extractors.
arXiv Detail & Related papers (2023-10-08T06:17:39Z) - From Quantity to Quality: Boosting LLM Performance with Self-Guided Data Selection for Instruction Tuning [52.257422715393574]
We introduce a self-guided methodology for Large Language Models (LLMs) to autonomously discern and select cherry samples from open-source datasets.
Our key innovation, the Instruction-Following Difficulty (IFD) metric, emerges as a pivotal metric to identify discrepancies between a model's expected responses and its intrinsic generation capability.
arXiv Detail & Related papers (2023-08-23T09:45:29Z) - CodeGen2: Lessons for Training LLMs on Programming and Natural Languages [116.74407069443895]
We unify encoder and decoder-based models into a single prefix-LM.
For learning methods, we explore the claim of a "free lunch" hypothesis.
For data distributions, the effect of a mixture distribution and multi-epoch training of programming and natural languages on model performance is explored.
arXiv Detail & Related papers (2023-05-03T17:55:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.