論文の概要: Intersectional Unfairness Discovery
- arxiv url: http://arxiv.org/abs/2405.20790v1
- Date: Fri, 31 May 2024 13:45:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 14:37:39.483538
- Title: Intersectional Unfairness Discovery
- Title(参考訳): 間欠的不公平発見
- Authors: Gezheng Xu, Qi Chen, Charles Ling, Boyu Wang, Changjian Shui,
- Abstract要約: 本稿では,高バイアスの交叉感度特性を効率的に生成するBGGNを提案する。
実世界のテキストと画像データセットの実験では、BGGNの多様性と効率的な発見が示されている。
生成した不明瞭で不公平な交差性のある属性を更に評価するために、我々はそれらをプロンプトとして定式化し、近代的な生成AIを使って新しいテキストや画像を生成する。
- 参考スコア(独自算出の注目度): 15.349612971772862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: AI systems have been shown to produce unfair results for certain subgroups of population, highlighting the need to understand bias on certain sensitive attributes. Current research often falls short, primarily focusing on the subgroups characterized by a single sensitive attribute, while neglecting the nature of intersectional fairness of multiple sensitive attributes. This paper focuses on its one fundamental aspect by discovering diverse high-bias subgroups under intersectional sensitive attributes. Specifically, we propose a Bias-Guided Generative Network (BGGN). By treating each bias value as a reward, BGGN efficiently generates high-bias intersectional sensitive attributes. Experiments on real-world text and image datasets demonstrate a diverse and efficient discovery of BGGN. To further evaluate the generated unseen but possible unfair intersectional sensitive attributes, we formulate them as prompts and use modern generative AI to produce new texts and images. The results of frequently generating biased data provides new insights of discovering potential unfairness in popular modern generative AI systems. Warning: This paper contains generative examples that are offensive in nature.
- Abstract(参考訳): AIシステムは、特定の集団のサブグループに対して不公平な結果をもたらすことが示されており、特定のセンシティブな属性に対するバイアスを理解する必要性を強調している。
現在の研究は、主に単一の感度属性を特徴とする部分群に焦点をあてる一方で、複数の感度属性の交叉フェアネスの性質を無視する。
本稿では,多種多様なハイバイアス部分群を交叉感度特性下で発見することによって,その1つの基本的側面に焦点をあてる。
具体的には,Bias-Guided Generative Network (BGGN)を提案する。
各バイアス値を報酬として扱うことにより、BGGNは高バイアス交叉感度特性を効率よく生成する。
実世界のテキストと画像データセットの実験では、BGGNの多様性と効率的な発見が示されている。
生成した不明瞭で不公平な交差性のある属性を更に評価するために、我々はそれらをプロンプトとして定式化し、近代的な生成AIを使って新しいテキストや画像を生成する。
バイアス付きデータを頻繁に生成する結果は、人気のある近代的生成AIシステムにおける潜在的な不公平性を発見するための新たな洞察を提供する。
警告:本論文は、自然に有害な生成例を含む。
関連論文リスト
- Fairpriori: Improving Biased Subgroup Discovery for Deep Neural Network Fairness [21.439820064223877]
本稿では,新しいバイアス付きサブグループ発見法であるFairprioriを紹介する。
このアルゴリズムは、交差点バイアスの効率的かつ効率的な調査を容易にするために、頻繁なアイテムセット生成アルゴリズムを組み込んでいる。
フェアプリオリは交叉バイアスを特定する際に優れた効果と効率を示す。
論文 参考訳(メタデータ) (2024-06-25T00:15:13Z) - AITTI: Learning Adaptive Inclusive Token for Text-to-Image Generation [53.65701943405546]
我々は適応的包摂トークンを学習し、最終的な生成出力の属性分布をシフトする。
本手法では,明示的な属性仕様やバイアス分布の事前知識は必要としない。
提案手法は,特定の属性を要求されたり,生成の方向を編集するモデルに匹敵する性能を実現する。
論文 参考訳(メタデータ) (2024-06-18T17:22:23Z) - Practical Bias Mitigation through Proxy Sensitive Attribute Label
Generation [0.0]
本稿では,非教師なし埋め込み生成の2段階的アプローチとクラスタリングによるプロキシ・センシティブなラベルの取得を提案する。
我々の研究の有効性は、バイアスが感度属性と相関する非感度属性を通して伝播するという仮定に依存している。
実験結果から、Fair MixupやAdversarial Debiasingといった既存のアルゴリズムによるバイアス緩和は、導出されたプロキシラベルに匹敵する結果をもたらすことが示された。
論文 参考訳(メタデータ) (2023-12-26T10:54:15Z) - Causality and Independence Enhancement for Biased Node Classification [56.38828085943763]
各種グラフニューラルネットワーク(GNN)に適用可能な新しい因果性・独立性向上(CIE)フレームワークを提案する。
提案手法は,ノード表現レベルでの因果的特徴と突発的特徴を推定し,突発的相関の影響を緩和する。
我々のアプローチCIEは、GNNの性能を大幅に向上するだけでなく、最先端の debiased ノード分類法よりも優れています。
論文 参考訳(メタデータ) (2023-10-14T13:56:24Z) - Uncovering Bias in Face Generation Models [0.0]
GANと拡散モデルの最近の進歩により、高解像度の超現実的画像の作成が可能になった。
これらのモデルは特定の社会集団を誤って表現し、偏見を呈することがある。
この研究は、3つのアプローチに対するバイアスのきめ細かい理解のための空間をカバーおよび埋め込みする新しい分析である。
論文 参考訳(メタデータ) (2023-02-22T18:57:35Z) - Fairness via Adversarial Attribute Neighbourhood Robust Learning [49.93775302674591]
本稿では,分類ヘッドを損なうために,UnderlineRobust underlineAdversarial underlineAttribute underlineNeighbourhood (RAAN)損失を原則として提案する。
論文 参考訳(メタデータ) (2022-10-12T23:39:28Z) - Semi-FairVAE: Semi-supervised Fair Representation Learning with
Adversarial Variational Autoencoder [92.67156911466397]
逆変分オートエンコーダに基づく半教師付き公正表現学習手法を提案する。
我々は、バイアス認識モデルを用いて、機密属性の固有バイアス情報をキャプチャする。
また、偏見のないモデルを用いて、対立学習を用いて偏見情報を取り除き、偏見のない公正表現を学習する。
論文 参考訳(メタデータ) (2022-04-01T15:57:47Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
機械学習におけるマルチグループフェアネスの研究(MultiFair)
この問題を解決するために,汎用的なエンドツーエンドのアルゴリズムフレームワークを提案する。
提案するフレームワークは多くの異なる設定に一般化可能である。
論文 参考訳(メタデータ) (2021-05-24T02:30:22Z) - Improving Fairness of AI Systems with Lossless De-biasing [15.039284892391565]
AIシステムのバイアスを緩和して全体的な公正性を高めることが重要な課題となっている。
我々は,不利益グループにおけるデータの不足を対象とする情報損失のない脱バイアス手法を提案する。
論文 参考訳(メタデータ) (2021-05-10T17:38:38Z) - Data Augmentation Imbalance For Imbalanced Attribute Classification [60.71438625139922]
本稿では,データ拡張不均衡(DAI)と呼ばれる新しい再サンプリングアルゴリズムを提案する。
我々のDAIアルゴリズムは歩行者属性のデータセットに基づいて最先端の結果を得る。
論文 参考訳(メタデータ) (2020-04-19T20:43:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。